Степенные функции, их свойства и графики. Степенные функции с рациональным показателем. Степенная функция, ее свойства и график Степенная функция показатель отрицательный


Основные элементарные функции, присущие им свойства и соответствующие графики – одни из азов математических знаний, схожих по степени важности с таблицей умножения. Элементарные функции являются базой, опорой для изучения всех теоретических вопросов.

Статья ниже дает ключевой материал по теме основных элементарных функций. Мы введем термины, дадим им определения; подробно изучим каждый вид элементарных функций, разберем их свойства.

Выделяют следующие виды основных элементарных функций:

Определение 1

  • постоянная функция (константа);
  • корень n -ой степени;
  • степенная функция;
  • показательная функция;
  • логарифмическая функция;
  • тригонометрические функции;
  • братные тригонометрические функции.

Постоянная функция определяется формулой: y = C (C – некое действительное число) и имеет также название: константа. Данная функция определяет соответствие любому действительному значению независимой переменной x одного и того же значения переменной y – значение C .

График константы – это прямая, которая параллельна оси абсцисс и проходит через точку, имеющую координаты (0 , С) . Для наглядности приведем графики постоянных функций y = 5 , y = - 2 , y = 3 , y = 3 (на чертеже обозначено черным, красным и синим цветами соответственно).

Определение 2

Данная элементарная функция определяется формулой y = x n (n – натуральное число больше единицы).

Рассмотрим две вариации функции.

  1. Корень n -й степени, n – четное число

Для наглядности укажем чертеж, на котором изображены графики таких функций: y = x , y = x 4 и y = x 8 . Эти функции отмечены цветом: черный, красный и синий соответственно.

Похожий вид у графиков функции четной степени при иных значениях показателя.

Определение 3

Свойства функции корень n-ой степени, n – четное число

  • область определения – множество всех неотрицательных действительных чисел [ 0 , + ∞) ;
  • когда x = 0 , функция y = x n имеет значение, равное нулю;
  • данная функция- функция общего вида (не является ни четной, ни нечетной);
  • область значений: [ 0 , + ∞) ;
  • данная функция y = x n при четных показателях корня возрастает на всей области определения;
  • функция обладает выпуклостью с направлением вверх на всей области определения;
  • отсутствуют точки перегиба;
  • асимптоты отсутствуют;
  • график функции при четных n проходит через точки (0 ; 0) и (1 ; 1) .
  1. Корень n -й степени, n – нечетное число

Такая функция определена на всем множестве действительных чисел. Для наглядности рассмотрим графики функций y = x 3 , y = x 5 и x 9 . На чертеже они обозначены цветами: черный, красный и синий цвета кривых соответственно.

Иные нечетные значения показателя корня функции y = x n дадут график аналогичного вида.

Определение 4

Свойства функции корень n-ой степени, n – нечетное число

  • область определения – множество всех действительных чисел;
  • данная функция – нечетная;
  • область значений – множество всех действительных чисел;
  • функция y = x n при нечетных показателях корня возрастает на всей области определения;
  • функция имеет вогнутость на промежутке (- ∞ ; 0 ] и выпуклость на промежутке [ 0 , + ∞) ;
  • точка перегиба имеет координаты (0 ; 0) ;
  • асимптоты отсутствуют;
  • график функции при нечетных n проходит через точки (- 1 ; - 1) , (0 ; 0) и (1 ; 1) .

Степенная функция

Определение 5

Степенная функция определяется формулой y = x a .

Вид графиков и свойства функции зависят от значения показателя степени.

  • когда степенная функция имеет целый показатель a , то вид графика степенной функции и ее свойства зависят от того, четный или нечетный показатель степени, а также того, какой знак имеет показатель степени. Рассмотрим все эти частные случаи подробнее ниже;
  • показатель степени может быть дробным или иррациональным – в зависимости от этого также варьируется вид графиков и свойства функции. Мы разберем частные случаи, задав несколько условий: 0 < a < 1 ; a > 1 ; - 1 < a < 0 и a < - 1 ;
  • степенная функция может иметь нулевой показатель, этот случай также ниже разберем подробнее.

Разберем степенную функцию y = x a , когда a – нечетное положительное число, например, a = 1 , 3 , 5 …

Для наглядности укажем графики таких степенных функций: y = x (черный цвет графика), y = x 3 (синий цвет графика), y = x 5 (красный цвет графика), y = x 7 (зеленый цвет графика). Когда a = 1 , получаем линейную функцию y = x .

Определение 6

Свойства степенной функции, когда показатель степени – нечетный положительный

  • функция является возрастающей при x ∈ (- ∞ ; + ∞) ;
  • функция имеет выпуклость при x ∈ (- ∞ ; 0 ] и вогнутость при x ∈ [ 0 ; + ∞) (исключая линейную функцию);
  • точка перегиба имеет координаты (0 ; 0) (исключая линейную функцию);
  • асимптоты отсутствуют;
  • точки прохождения функции: (- 1 ; - 1) , (0 ; 0) , (1 ; 1) .

Разберем степенную функцию y = x a , когда a – четное положительное число, например, a = 2 , 4 , 6 …

Для наглядности укажем графики таких степенных функций: y = x 2 (черный цвет графика), y = x 4 (синий цвет графика), y = x 8 (красный цвет графика). Когда a = 2 , получаем квадратичную функцию, график которой – квадратичная парабола.

Определение 7

Свойства степенной функции, когда показатель степени – четный положительный:

  • область определения: x ∈ (- ∞ ; + ∞) ;
  • убывающей при x ∈ (- ∞ ; 0 ] ;
  • функция имеет вогнутость при x ∈ (- ∞ ; + ∞) ;
  • очки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точки прохождения функции: (- 1 ; 1) , (0 ; 0) , (1 ; 1) .

На рисунке ниже приведены примеры графиков степенной функции y = x a , когда a – нечетное отрицательное число: y = x - 9 (черный цвет графика); y = x - 5 (синий цвет графика); y = x - 3 (красный цвет графика); y = x - 1 (зеленый цвет графика). Когда a = - 1 , получаем обратную пропорциональность, график которой – гипербола.

Определение 8

Свойства степенной функции, когда показатель степени – нечетный отрицательный:

Когда х = 0 , получаем разрыв второго рода, поскольку lim x → 0 - 0 x a = - ∞ , lim x → 0 + 0 x a = + ∞ при a = - 1 , - 3 , - 5 , … . Таким образом, прямая х = 0 – вертикальная асимптота;

  • область значений: y ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;
  • функция является нечетной, поскольку y (- x) = - y (x) ;
  • функция является убывающей при x ∈ - ∞ ; 0 ∪ (0 ; + ∞) ;
  • функция имеет выпуклость при x ∈ (- ∞ ; 0) и вогнутость при x ∈ (0 ; + ∞) ;
  • точки перегиба отсутствуют;

k = lim x → ∞ x a x = 0 , b = lim x → ∞ (x a - k x) = 0 ⇒ y = k x + b = 0 , когда а = - 1 , - 3 , - 5 , . . . .

  • точки прохождения функции: (- 1 ; - 1) , (1 ; 1) .

На рисунке ниже приведены примеры графиков степенной функции y = x a , когда a – четное отрицательное число: y = x - 8 (черный цвет графика); y = x - 4 (синий цвет графика); y = x - 2 (красный цвет графика).

Определение 9

Свойства степенной функции, когда показатель степени – четный отрицательный:

  • область определения: x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;

Когда х = 0 , получаем разрыв второго рода, поскольку lim x → 0 - 0 x a = + ∞ , lim x → 0 + 0 x a = + ∞ при a = - 2 , - 4 , - 6 , … . Таким образом, прямая х = 0 – вертикальная асимптота;

  • функция является четной, поскольку y (- x) = y (x) ;
  • функция является возрастающей при x ∈ (- ∞ ; 0) и убывающей при x ∈ 0 ; + ∞ ;
  • функция имеет вогнутость при x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 , поскольку:

k = lim x → ∞ x a x = 0 , b = lim x → ∞ (x a - k x) = 0 ⇒ y = k x + b = 0 , когда a = - 2 , - 4 , - 6 , . . . .

  • точки прохождения функции: (- 1 ; 1) , (1 ; 1) .

С самого начала обратите внимание на следующий аспект: в случае, когда a – положительная дробь с нечетным знаменателем, некоторые авторы принимают за область определения этой степенной функции интервал - ∞ ; + ∞ , оговаривая при этом, что показатель a – несократимая дробь. На данный момент авторы многих учебных изданий по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции, где показатель – дробь с нечетным знаменателем при отрицательных значениях аргумента. Далее мы придержемся именно такой позиции: возьмем за область определения степенных функций с дробными положительными показателями степени множество [ 0 ; + ∞) . Рекомендация для учащихся: выяснить взгляд преподавателя на этот момент во избежание разногласий.

Итак, разберем степенную функцию y = x a , когда показатель степени – рациональное или иррациональное число при условии, что 0 < a < 1 .

Проиллюстрируем графиками степенные функции y = x a , когда a = 11 12 (черный цвет графика); a = 5 7 (красный цвет графика); a = 1 3 (синий цвет графика); a = 2 5 (зеленый цвет графика).

Иные значения показателя степени a (при условии 0 < a < 1) дадут аналогичный вид графика.

Определение 10

Свойства степенной функции при 0 < a < 1:

  • область значений: y ∈ [ 0 ; + ∞) ;
  • функция является возрастающей при x ∈ [ 0 ; + ∞) ;
  • функция имеет выпуклость при x ∈ (0 ; + ∞) ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;

Разберем степенную функцию y = x a , когда показатель степени – нецелое рациональное или иррациональное число при условии, что a > 1 .

Проиллюстрируем графиками степенную функцию y = x a в заданных условиях на примере таких функций: y = x 5 4 , y = x 4 3 , y = x 7 3 , y = x 3 π (черный, красный, синий, зеленый цвет графиков соответственно).

Иные значения показателя степени а при условии a > 1 дадут похожий вид графика.

Определение 11

Свойства степенной функции при a > 1:

  • область определения: x ∈ [ 0 ; + ∞) ;
  • область значений: y ∈ [ 0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • функция является возрастающей при x ∈ [ 0 ; + ∞) ;
  • функция имеет вогнутость при x ∈ (0 ; + ∞) (когда 1 < a < 2) и выпуклость при x ∈ [ 0 ; + ∞) (когда a > 2);
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точки прохождения функции: (0 ; 0) , (1 ; 1) .

Обращаем ваше внимание!Когда a – отрицательная дробь с нечетным знаменателем, в работах некоторых авторов встречается взгляд, что область определения в данном случае – интервал - ∞ ; 0 ∪ (0 ; + ∞) с оговоркой, что показатель степени a – несократимая дробь. На данный момент авторы учебных материалов по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Далее мы придерживаемся именно такого взгляда: возьмем за область определения степенных функций с дробными отрицательными показателями множество (0 ; + ∞) . Рекомендация для учащихся: уточните видение вашего преподавателя на этот момент во избежание разногласий.

Продолжаем тему и разбираем степенную функцию y = x a при условии: - 1 < a < 0 .

Приведем чертеж графиков следующий функций: y = x - 5 6 , y = x - 2 3 , y = x - 1 2 2 , y = x - 1 7 (черный, красный, синий, зеленый цвет линий соответственно).

Определение 12

Свойства степенной функции при - 1 < a < 0:

lim x → 0 + 0 x a = + ∞ , когда - 1 < a < 0 , т.е. х = 0 – вертикальная асимптота;

  • область значений: y ∈ 0 ; + ∞ ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • точки перегиба отсутствуют;

На чертеже ниже приведены графики степенных функций y = x - 5 4 , y = x - 5 3 , y = x - 6 , y = x - 24 7 (черный, красный, синий, зеленый цвета кривых соответственно).

Определение 13

Свойства степенной функции при a < - 1:

  • область определения: x ∈ 0 ; + ∞ ;

lim x → 0 + 0 x a = + ∞ , когда a < - 1 , т.е. х = 0 – вертикальная асимптота;

  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • функция является убывающей при x ∈ 0 ; + ∞ ;
  • функция имеет вогнутость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 ;
  • точка прохождения функции: (1 ; 1) .

Когда a = 0 и х ≠ 0 , получим функцию y = x 0 = 1 , определяющую прямую, из которой исключена точка (0 ; 1) (условились, что выражению 0 0 не будет придаваться никакого значения).

Показательная функция имеет вид y = a x , где а > 0 и а ≠ 1 , и график этой функции выглядит различно, исходя из значения основания a . Рассмотрим частные случаи.

Сначала разберем ситуацию, когда основание показательной функции имеет значение от нуля до единицы (0 < a < 1) . Наглядным примером послужат графики функций при a = 1 2 (синий цвет кривой) и a = 5 6 (красный цвет кривой).

Подобный же вид будут иметь графики показательной функции при иных значениях основания при условии 0 < a < 1 .

Определение 14

Свойства показательной функции, когда основание меньше единицы:

  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • показательная функция, у которой основание меньше единицы, является убывающей на всей области определения;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 при переменной x , стремящейся к + ∞ ;

Теперь рассмотрим случай, когда основание показательной функции больше, чем единица (а > 1) .

Проиллюстрируем этот частный случай графиком показательных функций y = 3 2 x (синий цвет кривой) и y = e x (красный цвет графика).

Иные значения основания, большие единицы, дадут аналогичный вид графика показательной функции.

Определение 15

Свойства показательной функции, когда основание больше единицы:

  • область определения – все множество действительных чисел;
  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • показательная функция, у которой основание больше единицы, является возрастающей при x ∈ - ∞ ; + ∞ ;
  • функция имеет вогнутость при x ∈ - ∞ ; + ∞ ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 при переменной x , стремящейся к - ∞ ;
  • точка прохождения функции: (0 ; 1) .

Логарифмическая функция имеет вид y = log a (x) , где a > 0 , a ≠ 1 .

Такая функция определена только при положительных значениях аргумента: при x ∈ 0 ; + ∞ .

График логарифмической функции имеет различный вид, исходя из значения основания а.

Рассмотрим сначала ситуацию, когда 0 < a < 1 . Продемонстрируем этот частный случай графиком логарифмической функции при a = 1 2 (синий цвет кривой) и а = 5 6 (красный цвет кривой).

Иные значения основания, не большие единицы, дадут аналогичный вид графика.

Определение 16

Свойства логарифмической функции, когда основание меньше единицы:

  • область определения: x ∈ 0 ; + ∞ . Когда х стремится к нулю справа, значения функции стремятся к + ∞ ;
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • логарифмическая
  • функция имеет вогнутость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;

Теперь разберем частный случай, когда основание логарифмической функции больше единицы: а > 1 . На чертеже ниже –графики логарифмических функций y = log 3 2 x и y = ln x (синий и красный цвета графиков соответственно).

Иные значения основания больше единицы дадут аналогичный вид графика.

Определение 17

Свойства логарифмической функции, когда основание больше единицы:

  • область определения: x ∈ 0 ; + ∞ . Когда х стремится к нулю справа, значения функции стремятся к - ∞ ;
  • область значений: y ∈ - ∞ ; + ∞ (все множество действительных чисел);
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • логарифмическая функция является возрастающей при x ∈ 0 ; + ∞ ;
  • функция имеет выпуклость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точка прохождения функции: (1 ; 0) .

Тригонометрические функции – это синус, косинус, тангенс и котангенс. Разберем свойства каждой из них и соответствующие графики.

В общем для всех тригонометрических функций характерно свойство периодичности, т.е. когда значения функций повторяются при разных значениях аргумента, отличающихся друг от друга на величину периода f (x + T) = f (x) (T – период). Таким образом, в списке свойств тригонометрических функций добавляется пункт «наименьший положительный период». Помимо этого, будем указывать такие значения аргумента, при которых соответствующая функция обращается в нуль.

  1. Функция синус: y = sin (х)

График данной функции называется синусоида.

Определение 18

Свойства функции синус:

  • область определения: все множество действительных чисел x ∈ - ∞ ; + ∞ ;
  • функция обращается в нуль, когда x = π · k , где k ∈ Z (Z – множество целых чисел);
  • функция является возрастающей при x ∈ - π 2 + 2 π · k ; π 2 + 2 π · k , k ∈ Z и убывающей при x ∈ π 2 + 2 π · k ; 3 π 2 + 2 π · k , k ∈ Z ;
  • функция синус имеет локальные максимумы в точках π 2 + 2 π · k ; 1 и локальные минимумы в точках - π 2 + 2 π · k ; - 1 , k ∈ Z ;
  • функция синус вогнутая, когда x ∈ - π + 2 π · k ; 2 π · k , k ∈ Z и выпуклая, когда x ∈ 2 π · k ; π + 2 π · k , k ∈ Z ;
  • асимптоты отсутствуют.
  1. Функция косинус: y = cos (х)

График данной функции называется косинусоида.

Определение 19

Свойства функции косинус:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • наименьший положительный период: Т = 2 π ;
  • область значений: y ∈ - 1 ; 1 ;
  • данная функция – четная, поскольку y (- x) = y (x) ;
  • функция является возрастающей при x ∈ - π + 2 π · k ; 2 π · k , k ∈ Z и убывающей при x ∈ 2 π · k ; π + 2 π · k , k ∈ Z ;
  • функция косинус имеет локальные максимумы в точках 2 π · k ; 1 , k ∈ Z и локальные минимумы в точках π + 2 π · k ; - 1 , k ∈ z ;
  • функция косинус вогнутая, когда x ∈ π 2 + 2 π · k ; 3 π 2 + 2 π · k , k ∈ Z и выпуклая, когда x ∈ - π 2 + 2 π · k ; π 2 + 2 π · k , k ∈ Z ;
  • точки перегиба имеют координаты π 2 + π · k ; 0 , k ∈ Z
  • асимптоты отсутствуют.
  1. Функция тангенс: y = t g (х)

График данной функции называется тангенсоида.

Определение 20

Свойства функции тангенс:

  • область определения: x ∈ - π 2 + π · k ; π 2 + π · k , где k ∈ Z (Z – множество целых чисел);
  • Поведение функции тангенс на границе области определения lim x → π 2 + π · k + 0 t g (x) = - ∞ , lim x → π 2 + π · k - 0 t g (x) = + ∞ . Таким образом, прямые x = π 2 + π · k k ∈ Z – вертикальные асимптоты;
  • функция обращается в нуль, когда x = π · k при k ∈ Z (Z – множество целых чисел);
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является возрастающей при - π 2 + π · k ; π 2 + π · k , k ∈ Z ;
  • функция тангенс является вогнутой при x ∈ [ π · k ; π 2 + π · k) , k ∈ Z и выпуклой при x ∈ (- π 2 + π · k ; π · k ] , k ∈ Z ;
  • точки перегиба имеют координаты π · k ; 0 , k ∈ Z ;
  1. Функция котангенс: y = c t g (х)

График данной функции называется котангенсоида.

Определение 21

Свойства функции котангенс:

  • область определения: x ∈ (π · k ; π + π · k) , где k ∈ Z (Z – множество целых чисел);

Поведение функции котангенс на границе области определения lim x → π · k + 0 t g (x) = + ∞ , lim x → π · k - 0 t g (x) = - ∞ . Таким образом, прямые x = π · k k ∈ Z – вертикальные асимптоты;

  • наименьший положительный период: Т = π ;
  • функция обращается в нуль, когда x = π 2 + π · k при k ∈ Z (Z – множество целых чисел);
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является убывающей при x ∈ π · k ; π + π · k , k ∈ Z ;
  • функция котангенс является вогнутой при x ∈ (π · k ; π 2 + π · k ] , k ∈ Z и выпуклой при x ∈ [ - π 2 + π · k ; π · k) , k ∈ Z ;
  • точки перегиба имеют координаты π 2 + π · k ; 0 , k ∈ Z ;
  • наклонные и горизонтальные асимптоты отсутствуют.

Обратные тригонометрические функции – это арксинус, арккосинус, арктангенс и арккотангенс. Зачастую, в связи с наличием приставки «арк» в названии, обратные тригонометрические функции называют аркфункциями.

  1. Функция арксинус: y = a r c sin (х)

Определение 22

Свойства функции арксинус:

  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция арксинус имеет вогнутость при x ∈ 0 ; 1 и выпуклость при x ∈ - 1 ; 0 ;
  • точки перегиба имеют координаты (0 ; 0) , она же – нуль функции;
  • асимптоты отсутствуют.
  1. Функция арккосинус: y = a r c cos (х)

Определение 23

Свойства функции арккосинус:

  • область определения: x ∈ - 1 ; 1 ;
  • область значений: y ∈ 0 ; π ;
  • данная функция - общего вида (ни четная, ни нечетная);
  • функция является убывающей на всей области определения;
  • функция арккосинус имеет вогнутость при x ∈ - 1 ; 0 и выпуклость при x ∈ 0 ; 1 ;
  • точки перегиба имеют координаты 0 ; π 2 ;
  • асимптоты отсутствуют.
  1. Функция арктангенс: y = a r c t g (х)

Определение 24

Свойства функции арктангенс:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • область значений: y ∈ - π 2 ; π 2 ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является возрастающей на всей области определения;
  • функция арктангенс имеет вогнутость при x ∈ (- ∞ ; 0 ] и выпуклость при x ∈ [ 0 ; + ∞) ;
  • точка перегиба имеет координаты (0 ; 0) , она же – нуль функции;
  • горизонтальные асимптоты – прямые y = - π 2 при x → - ∞ и y = π 2 при x → + ∞ (на рисунке асимптоты – это линии зеленого цвета).
  1. Функция арккотангенс: y = a r c c t g (х)

Определение 25

Свойства функции арккотангенс:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • область значений: y ∈ (0 ; π) ;
  • данная функция – общего вида;
  • функция является убывающей на всей области определения;
  • функция арккотангенс имеет вогнутость при x ∈ [ 0 ; + ∞) и выпуклость при x ∈ (- ∞ ; 0 ] ;
  • точка перегиба имеет координаты 0 ; π 2 ;
  • горизонтальные асимптоты – прямые y = π при x → - ∞ (на чертеже – линия зеленого цвета) и y = 0 при x → + ∞ .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Тема урока: Степенная функция и ее график.

Как алгебраисты вместо АА, ААА, … пишут А 2 , А 3 , … так я вместо пишу а -1 , а -2 , а -3 , … Ньютон И.

у = х х у у = х 2 х у у = х 3 х у х у Прямая Парабола Кубическая парабола Гипербола Нам знакомы функции: Все эти функции являются частными случаями степенной функции

где р – заданное действительное число Определение: Степенной функцией называется функция вида у = х p Свойства и график степенной функции зависят от свойств степени с действительным показателем, и в частности от того, при каких значениях х и р имеет смысл степень х р.

Функция у=х 2 n четная, т.к. (– х) 2 n = х 2 n Функция убывает на промежутке Функция возрастает на промежутке Степенная функция: Показатель р = 2n – четное натуральное число у = х 2 , у = х 4 , у = х 6 , у = х 8 , … 1 0 х у у = х 2

y x - 1 0 1 2 у = х 2 у = х 6 у = х 4 Степенная функция: Показатель р = 2n – четное натуральное число у = х 2 , у = х 4 , у = х 6 , у = х 8 , …

Функция у=х 2 n -1 нечетная, т.к. (– х) 2 n -1 = – х 2 n -1 Функция возрастает на промежутке Степенная функция: Показатель р = 2n-1 – нечетное натуральное число у = х 3 , у = х 5 , у = х 7 , у = х 9 , … 1 0

Степенная функция: y x - 1 0 1 2 у = х 3 у = х 7 у = х 5 Показатель р = 2n-1 – нечетное натуральное число у = х 3 , у = х 5 , у = х 7 , у = х 9 , …

Функция у=х- 2 n четная, т.к. (– х) -2 n = х -2 n Функция возрастает на промежутке Функция убывает на промежутке Степенная функция: Показатель р = -2n – где n натуральное число у = х -2 , у = х -4 , у = х -6 , у = х -8 , … 0 1

1 0 1 2 у = х -4 у = х -2 у = х -6 Степенная функция: Показатель р = -2n – где n натуральное число у = х -2 , у = х -4 , у = х -6 , у = х -8 , … y x

Функция убывает на промежутке Функция у=х -(2 n -1) нечетная, т.к. (– х) –(2 n -1) = – х –(2 n -1) Функция убывает на промежутке Степенная функция: Показатель р = -(2n-1) – где n натуральное число у = х -3 , у = х -5 , у = х -7 , у = х -9 , … 1 0

у = х -1 у = х -3 у = х -5 Степенная функция: Показатель р = -(2n-1) – где n натуральное число у = х -3 , у = х -5 , у = х -7 , у = х -9 , … y x - 1 0 1 2

Степенная функция: Показатель р – положительное действительное нецелое число у = х 1,3 , у = х 0,7 , у = х 2,2 , у = х 1/3 ,… 0 1 х у Функция возрастает на промежутке

у = х 0,7 Степенная функция: Показатель р – положительное действительное нецелое число у = х 1,3 , у = х 0,7 , у = х 2,2 , у = х 1/3 ,… y x - 1 0 1 2 у = х 0,5 у = х 0,84

Степенная функция: Показатель р – положительное действительное нецелое число у = х 1,3 , у = х 0,7 , у = х 2,2 , у = х 1/3 ,… y x - 1 0 1 2 у = х 1,5 у = х 3,1 у = х 2,5

Степенная функция: Показатель р – отрицательное действительное нецелое число у= х -1,3 , у= х -0,7 , у= х -2,2 , у = х -1/3 ,… 0 1 х у Функция убывает на промежутке

у = х -0,3 у = х -2,3 у = х -3,8 Степенная функция: Показатель р – отрицательное действительное нецелое число у= х -1,3 , у= х -0,7 , у= х -2,2 , у = х -1/3 ,… y x - 1 0 1 2 у = х -1,3


По теме: методические разработки, презентации и конспекты

Применение интеграции в учебном процессе как способа развития аналитических и творческих способностей....

Лекция: Степенная функция с натуральным показателем, её график

Мы постоянно имеем дело с функциями, в которых аргумент имеет некоторую степень:
у = х 1 , у = х 2 , у = х 3 , у = х -1 и т.д.

Графики степенных функций

Итак, сейчас мы рассмотрим несколько возможных случаев степенной функции.

1) у = х 2 n .

Это означает, что сейчас мы будем рассматривать функции, в которых показатель степени является четным числом.

Характеристика функции:

1. В качестве области значения принимаются все действительные числа.

2. Функция может принимать все положительные значения и число нуль.

3. Функция является четной, поскольку не зависит от знака аргумента, а зависит только от его модуля.

4. Для положительного аргумента функция возрастает, а для отрицательного - убывает.

Графики данных функций напоминают параболу. Например, ниже представлен график функции у = х 4 .

2) Функция имеет нечетный показатель степени: у = х 2 n +1 .

1. Область определения функции - все множество действительных чисел.

2. Область значения функции - может принимать вид любого действительного числа.

3. Данная функция нечетная.

4. Монотонно возрастает на всем промежутке рассмотрения функции.

5. График всех степенных функций с нечетным показателем степени идентичен функции у = х 3 .

3) Функция имеет четный отрицательный натуральный показатель: у = х -2 n .

Все мы знаем, что отрицательный показатель степени позволяет опустить степень в знаменатель и менять знак показателя степени, то есть получится вид у = 1/х 2 n .

1. Аргумент данной функции может принимать любые значения, кроме нуля, поскольку переменная стоит в знаменателе.

2. Так как показатель степени - четное число, то функция не может принимать отрицательные значения. А раз аргумент не может быть равен нулю, то следует исключить и значение функции, равное нулю. Это значит, что функция может принимать только положительные значения.

3. Данная функция является четной.

4. При отрицательном аргументе функция монотонно возрастает, а при положительном - убывает.

Вид графика функции у = х -2:

4) Функция с отрицательным нечетным показателем степени у = х -(2 n +1) .

1. Данная функция существует при всех значениях аргумента, кроме числа нуль.

2. Функция принимает все действительные значения, кроме числа нуль.

3. Данная функция является нечетной.

4. На двух рассматриваемых промежутках убывает.

Рассмотрим пример графика функции с отрицательным нечетным показателем степени на примере у = х -3 .

Функция где Х – переменная величина, A – заданное число, называется Степенной функцией .

Если то – линейная функция, ее график – прямая линия (см. параграф 4.3, рис. 4.7).

Если то – квадратичная функция, ее график – парабола (см. параграф 4.3, рис. 4.8).

Если то ее график – кубическая парабола (см. параграф 4.3, рис. 4.9).

Степенная функция

Это обратная функция для

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: X = 0 – единственный нуль.

6. наибольшего и наименьшего значений функция не имеет.

7.

8. График функции Симметричен графику кубической параболы относительно прямой Y = X и изображен на рис. 5.1.

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция четная.

4. Периодичность функции: непериодическая.

5. Нули функции: единственный нуль X = 0.

6. Наибольшее и наименьшее значения функции: принимает наименьшее значение для X = 0, оно равно 0.

7. Промежутки возрастания и убывания: функция является убывающей на промежутке и возрастающей на промежутке

8. График функции (для каждого N Î N ) «похож» на график квадратичной параболы (графики функций изображены на рис. 5.2).

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: X = 0 – единственный нуль.

6. Наибольшее и наименьшее значения:

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции (для каждого ) «похож» на график кубической параболы (графики функций изображены на рис. 5.3).

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: нулей не имеет.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является убывающей в области определения.

8. Асимптоты: (ось Оу ) – вертикальная асимптота;

(ось Ох ) – горизонтальная асимптота.

9. График функции (для любого N ) «похож» на график гиперболы (графики функций изображены на рис. 5.4).

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция четная.

4. Периодичность функции: непериодическая.

5. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

6. Промежутки возрастания и убывания: функция является возрастающей на и убывающей на

7. Асимптоты: X = 0 (ось Оу ) – вертикальная асимптота;

Y = 0 (ось Ох ) – горизонтальная асимптота.

8. Графиками функций Являются квадратичные гиперболы (рис. 5.5).

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция не обладает свойством четности и нечетности.

4. Периодичность функции: непериодическая.

5. Нули функции: X = 0 – единственный нуль.

6. Наибольшее и наименьшее значения функции: наименьшее значение, равное 0, функция принимает в точке X = 0; наибольшего значения не имеет.

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. Каждая такая функция при определенном показателе является обратной для функции при условии

9. График функции «похож» на график функции при любом N и изображен на рис. 5.6.

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: X = 0 – единственный нуль.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции Изображен на рис. 5.7.