Дать определение производной элементарных функций. Решение производной для чайников: определение, как найти, примеры решений. Производные обратных тригонометрических функций


Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Приведем без доказательства формулы производных основных элементарных функций:

1. Степенная функция: (x n)` =nx n -1 .

2. Показательная функция: (a x)` =a x lna(в частности, (е x)` = е x).

3. Логарифмическая функция: (в частности, (lnx)` = 1/x).

4. Тригонометрические функции:

(cosх)` = -sinx

(tgх)` = 1/cos 2 x

(ctgх)` = -1/sin 2 x

5. Обратные тригонометрические функции:

Можно доказать, что для дифференцирования степенно-показательной функции необходимо дважды использовать формулу для производной сложной функции, а именно, дифференцировать ее и как сложную степенную функцию, и как сложную показательную, и сложить результаты: (f(x)  (x))` =(x)*f(x)  (x)-1 *f(x)` +f(x)  (x) *lnf(x)*(x)`.

Производные высших порядков

Поскольку производная функции сама является функцией, она тоже может иметь производную. Понятие производной, которое было рассмотрено выше, относится к производной первого порядка.

Производной n -го порядка называется производная от производной (n- 1)-го порядка. Например,f``(x) = (f`(x))` - производная второго порядка (или вторая производная),f```(x) = (f``(x))` - производная третьего порядка (или третья производная) и т.д. Иногда для обозначения производных более высокого порядка используются или римские арабские цифры в скобках, например,f (5) (x) илиf (V) (x) для производной пятого порядка.

Физический смысл производных высших порядков определяется так же, как и для первой производной: каждая из них представляет собой скорость изменения производной предыдущего порядка. Например, вторая производная представляет собой скорость изменения первой, т.е. скорость скорости. Для прямолинейного движения она означает ускорение точки в момент времени.

Эластичность функции

Эластичностью функции Е х (у)называется предел отношения относительного приращения функции у к относительному приращению аргумента х при последнем, стремящемся к нулю:
.

Эластичность функции показывает приближенно, на сколько процентов изменится функция у = f(x) при изменении независимой переменной х на 1%.

В экономическом смысле отличие этого показателя от производной в том, что производная имеет единицы измерения, и поэтому ее величина зависит от того, в каких единицах измеряются переменные. Например, если зависимость объема производства от времени выражается соответственно в тоннах и месяцах, то производная будет показывать предельное увеличения объема в тоннах за месяц; если же измерять эти показатели, допустим, в килограммах и днях, то и сама функция, и ее производная будут другими. Эластичность же является по сути своей величиной безразмерной (измеряется в процентах или долях) и поэтому не зависит от масштаба показателей.

Основные теоремы о дифференцируемых функциях и их приложения

Теорема Ферма . Если дифференцируемая на промежутке функция достигает наибольшего или наименьшего значения во внутренней точке этого промежутка, то производная функции в этой точке равна нулю.

Без доказательства.

Геометрический смысл теоремы Ферма состоит в том, что в точке наибольшего или наименьшего значения, достигаемого внутри промежутка, касательная к графику функции параллельна оси абсцисс (рисунок 3.3).

Теорема Ролля . Пусть функция у =f(x) удовлетворяет следующим условиям:

2) дифференцируема на интервале (а, b);

3) на концах отрезка принимает равные значения, т.е. f(a) =f(b).

Тогда внутри отрезка существует по крайней мере одна точка, в которой производная функции равна нулю.

Без доказательства.

Геометрический смысл теоремы Ролля заключается в том, что найдется хотя бы одна точка, в которой касательная к графику функции будет параллельна оси абсцисс (например, на рисунке 3.4 таких точек две).

Если f(a) =f(b) = 0, то теорему Ролля можно сформулировать по-другому: между двумя последовательными нулями дифференцируемой функции имеется хотя бы один нуль производной.

Теорема Ролля является частным случаем теоремы Лагранжа.

Теорема Лагранжа . Пусть функция у =f(х) удовлетворяет следующим условиям:

1) непрерывна на отрезке [а, b];

2) дифференцируема на интервале (а, b).

Тогда внутри отрезка существует по крайней мере одна такая точка с, в кдторой производная равна частному от деления приращения функций на приращение аргумента на этом отрезке:
.

Без доказательства.

Чтобы понять физический смысл теоремы Лагранжа, отметим, что
есть не что иное, как средняя скорость изменения функции на всем отрезке [а,b]. Таким образом, теорема утверждает, что внутри отрезка найдется хотя бы одна точка, в которой "мгновенная" скорость изменения функции равна средней скорости ее изменения на всем отрезке.

Геометрический смысл теоремы Лагранжа проиллюстрирован рисунком 3.5. Отметим, что выражение
представляет собой угловой коэффициент прямой, на которой лежит хорда АВ. Теорема утверждает, что на графике функции найдется хотя бы одна точка, в которой касательная к нему будет параллельна этой хорде (т.е. угловой коэффициент касательной – производная – будет таким же).

Следствие: если производная функции равна нулю на некотором промежутке, то функция тождественно постоянна на этом промежутке.

В самом деле, возьмем на этом промежутке промежуток . По теореме Лагранжа в этом промежутке найдется точка с, для которой
. Отсюда f(a) – f(x) = f `(с)(a – x) = 0; f(x) = f(a) = const.

Правило Лопиталя . Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле.

Иными словами, если имеется неопределенность вида
, то
.

Без доказательства.

Применение правила Лопиталя для нахождения пределов будет рассмотрено на практических занятиях.

Достаточное условие возрастания (убывания) функции . Если производная дифференцируемой функции положительна (отрицательна) внутри некоторого промежутка, то функция возрастает (убывает) на этом промежутке.

Доказательство. Рассмотрим два значения х 1 и х 2 из данного промежутка (пусть х 2 > х 1). По теореме Лагранда на [х 1 , х 2 ] существует точка с, в которой
. Отсюдаf(х 2) –f(x 1) =f`(с)(х 2 –x 1). Тогда приf`(с) > 0 левая часть неравенства положительна, т.е.f(х 2) >f(x 1), и функция является возрастающей. Приf`(с) < 0 левая часть неравенства отрицательна, т.е.f(х 2)

Теорема доказана.

Геометрическая интерпретация условия монотонности функции: если касательные к кривой в некотором промежутке направлены под острыми углами к оси абсцисс, то функция возрастает, а если под тупыми, то убывает (см. рисунок 3.6).

Замечание: необходимое условие монотонности более слабое. Если функция возрастает (убывает) на некотором промежутке, то производная неотрицательна (неположительна) на этом промежутке (т.е. в отдельных точках производная монотонной функции может равняться нулю).

Вычисление производной часто встречается в заданиях ЕГЭ. Данная страница содержит список формул для нахождения производных.

Правила дифференцирования

  1. (k⋅ f(x))′=k⋅ f ′(x).
  2. (f(x)+g(x))′=f′(x)+g′(x).
  3. (f(x)⋅ g(x))′=f′(x)⋅ g(x)+f(x)⋅ g′(x).
  4. Производная сложной функции. Если y=F(u), а u=u(x), то функция y=f(x)=F(u(x)) называется сложной функцией от x. Равна y′(x)=Fu′⋅ ux′.
  5. Производная неявной функции. Функция y=f(x) называется неявной функцией, заданной соотношением F(x,y)=0, если F(x,f(x))≡0.
  6. Производная обратной функции. Если g(f(x))=x, то функция g(x) называется обратной функцией для функции y=f(x).
  7. Производная параметрически заданной функции. Пусть x и y заданы как функции от переменной t: x=x(t), y=y(t). Говорят, что y=y(x) параметрически заданная функция на промежутке x∈ (a;b), если на этом промежутке уравнение x=x(t) можно выразить в виде t=t(x) и определить функцию y=y(t(x))=y(x).
  8. Производная степенно-показательной функции. Находится путем логарифмирования по основанию натурального логарифма.
Советуем сохранить ссылку, так как эта таблица может понадобиться еще много раз.

Приведем сводную таблицу для удобства и наглядности при изучении темы.

Константа y = C

Степенная функция y = x p

(x p) " = p · x p - 1

Показательная функция y = a x

(a x) " = a x · ln a

В частности, при a = e имеем y = e x

(e x) " = e x

Логарифмическая функция

(log a x) " = 1 x · ln a

В частности, при a = e имеем y = ln x

(ln x) " = 1 x

Тригонометрические функции

(sin x) " = cos x (cos x) " = - sin x (t g x) " = 1 cos 2 x (c t g x) " = - 1 sin 2 x

Обратные тригонометрические функции

(a r c sin x) " = 1 1 - x 2 (a r c cos x) " = - 1 1 - x 2 (a r c t g x) " = 1 1 + x 2 (a r c c t g x) " = - 1 1 + x 2

Гиперболические функции

(s h x) " = c h x (c h x) " = s h x (t h x) " = 1 c h 2 x (c t h x) " = - 1 s h 2 x

Разберем, каким образом были получены формулы указанной таблицы или, иначе говоря, докажем вывод формул производных для каждого вида функций.

Производная постоянной

Доказательство 1

Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x 0 = x , где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f (x) = C . Составим запись предела отношения приращения функции к приращению аргумента при ∆ x → 0:

lim ∆ x → 0 ∆ f (x) ∆ x = lim ∆ x → 0 C - C ∆ x = lim ∆ x → 0 0 ∆ x = 0

Обратите внимание, что под знак предела попадает выражение 0 ∆ x . Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.

Итак, производная постоянной функции f (x) = C равна нулю на всей области определения.

Пример 1

Даны постоянные функции:

f 1 (x) = 3 , f 2 (x) = a , a ∈ R , f 3 (x) = 4 . 13 7 22 , f 4 (x) = 0 , f 5 (x) = - 8 7

Решение

Опишем заданные условия. В первой функции мы видим производную натурального числа 3 . В следующем примере необходимо брать производную от а , где а - любое действительное число. Третий пример задает нам производную иррационального числа 4 . 13 7 22 , четвертый - производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби - 8 7 .

Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)

f 1 " (x) = (3) " = 0 , f 2 " (x) = (a) " = 0 , a ∈ R , f 3 " (x) = 4 . 13 7 22 " = 0 , f 4 " (x) = 0 " = 0 , f 5 " (x) = - 8 7 " = 0

Производная степенной функции

Переходим к степенной функции и формуле ее производной, имеющей вид: (x p) " = p · x p - 1 , где показатель степени p является любым действительным числом.

Доказательство 2

Приведем доказательство формулы, когда показатель степени – натуральное число: p = 1 , 2 , 3 , …

Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:

(x p) " = lim ∆ x → 0 = ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x

Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:

(x + ∆ x) p - x p = C p 0 + x p + C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + + C p p - 1 · x · (∆ x) p - 1 + C p p · (∆ x) p - x p = = C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + C p p - 1 · x · (∆ x) p - 1 + C p p · (∆ x) p

Таким образом:

(x p) " = lim ∆ x → 0 ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x = = lim ∆ x → 0 (C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + C p p - 1 · x · (∆ x) p - 1 + C p p · (∆ x) p) ∆ x = = lim ∆ x → 0 (C p 1 · x p - 1 + C p 2 · x p - 2 · ∆ x + . . . + C p p - 1 · x · (∆ x) p - 2 + C p p · (∆ x) p - 1) = = C p 1 · x p - 1 + 0 + 0 + . . . + 0 = p ! 1 ! · (p - 1) ! · x p - 1 = p · x p - 1

Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.

Доказательство 3

Чтобы привести доказательство для случая, когда p - любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.

Рассмотрим два случая: когда x положительны и когда x отрицательны.

Итак, x > 0 . Тогда: x p > 0 . Логарифмируем равенство y = x p по основанию e и применим свойство логарифма:

y = x p ln y = ln x p ln y = p · ln x

На данном этапе получили неявно заданную функцию. Определим ее производную:

(ln y) " = (p · ln x) 1 y · y " = p · 1 x ⇒ y " = p · y x = p · x p x = p · x p - 1

Теперь рассматриваем случай, когда x – отрицательное число.

Если показатель p есть четное число, то степенная функция определяется и при x < 0 , причем является четной: y (x) = - y ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p · x p - 1

Тогда x p < 0 и возможно составить доказательство, используя логарифмическую производную.

Если p есть нечетное число, тогда степенная функция определена и при x < 0 , причем является нечетной: y (x) = - y (- x) = - (- x) p . Тогда x p < 0 , а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y " (x) = (- (- x) p) " = - ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p · x p - 1

Последний переход возможен в силу того, что если p - нечетное число, то p - 1 либо четное число, либо нуль (при p = 1), поэтому, при отрицательных x верно равенство (- x) p - 1 = x p - 1 .

Итак, мы доказали формулу производной степенной функции при любом действительном p .

Пример 2

Даны функции:

f 1 (x) = 1 x 2 3 , f 2 (x) = x 2 - 1 4 , f 3 (x) = 1 x log 7 12

Определите их производные.

Решение

Часть заданных функций преобразуем в табличный вид y = x p , опираясь на свойства степени, а затем используем формулу:

f 1 (x) = 1 x 2 3 = x - 2 3 ⇒ f 1 " (x) = - 2 3 · x - 2 3 - 1 = - 2 3 · x - 5 3 f 2 " (x) = x 2 - 1 4 = 2 - 1 4 · x 2 - 1 4 - 1 = 2 - 1 4 · x 2 - 5 4 f 3 (x) = 1 x log 7 12 = x - log 7 12 ⇒ f 3 " (x) = - log 7 12 · x - log 7 12 - 1 = - log 7 12 · x - log 7 12 - log 7 7 = - log 7 12 · x - log 7 84

Производная показательной функции

Доказательство 4

Выведем формулу производной, взяв за основу определение:

(a x) " = lim ∆ x → 0 a x + ∆ x - a x ∆ x = lim ∆ x → 0 a x (a ∆ x - 1) ∆ x = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = 0 0

Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z = a ∆ x - 1 (z → 0 при ∆ x → 0). В таком случае a ∆ x = z + 1 ⇒ ∆ x = log a (z + 1) = ln (z + 1) ln a . Для последнего перехода использована формула перехода к новому основанию логарифма.

Осуществим подстановку в исходный предел:

(a x) " = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln (z + 1) = = a x · ln a · lim ∆ x → 0 1 ln (z + 1) 1 z = a x · ln a · 1 ln lim ∆ x → 0 (z + 1) 1 z

Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:

(a x) " = a x · ln a · 1 ln lim z → 0 (z + 1) 1 z = a x · ln a · 1 ln e = a x · ln a

Пример 3

Даны показательные функции:

f 1 (x) = 2 3 x , f 2 (x) = 5 3 x , f 3 (x) = 1 (e) x

Необходимо найти их производные.

Решение

Используем формулу производной показательной функции и свойства логарифма:

f 1 " (x) = 2 3 x " = 2 3 x · ln 2 3 = 2 3 x · (ln 2 - ln 3) f 2 " (x) = 5 3 x " = 5 3 x · ln 5 1 3 = 1 3 · 5 3 x · ln 5 f 3 " (x) = 1 (e) x " = 1 e x " = 1 e x · ln 1 e = 1 e x · ln e - 1 = - 1 e x

Производная логарифмической функции

Доказательство 5

Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:

(log a x) " = lim ∆ x → 0 log a (x + ∆ x) - log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x · log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a

Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim ∆ x → 0 1 + ∆ x x x ∆ x = e является верным в соответствии со вторым замечательным пределом.

Пример 4

Заданы логарифмические функции:

f 1 (x) = log ln 3 x , f 2 (x) = ln x

Необходимо вычислить их производные.

Решение

Применим выведенную формулу:

f 1 " (x) = (log ln 3 x) " = 1 x · ln (ln 3) ; f 2 " (x) = (ln x) " = 1 x · ln e = 1 x

Итак, производная натурального логарифма есть единица, деленная на x .

Производные тригонометрических функций

Доказательство 6

Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.

Согласно определению производной функции синуса, получим:

(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x

Формула разности синусов позволит нам произвести следующие действия:

(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x = = lim ∆ x → 0 2 · sin x + ∆ x - x 2 · cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2

Наконец, используем первый замечательный предел:

sin " x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x

Итак, производной функции sin x будет cos x .

Совершенно также докажем формулу производной косинуса:

cos " x = lim ∆ x → 0 cos (x + ∆ x) - cos x ∆ x = = lim ∆ x → 0 - 2 · sin x + ∆ x - x 2 · sin x + ∆ x + x 2 ∆ x = = - lim ∆ x → 0 sin ∆ x 2 · sin x + ∆ x 2 ∆ x 2 = = - sin x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = - sin x

Т.е. производной функции cos x будет – sin x .

Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:

t g " x = sin x cos x " = sin " x · cos x - sin x · cos " x cos 2 x = = cos x · cos x - sin x · (- sin x) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g " x = cos x sin x " = cos " x · sin x - cos x · sin " x sin 2 x = = - sin x · sin x - cos x · cos x sin 2 x = - sin 2 x + cos 2 x sin 2 x = - 1 sin 2 x

Производные обратных тригонометрических функций

Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.

Производные гиперболических функций

Доказательство 7

Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:

s h " x = e x - e - x 2 " = 1 2 e x " - e - x " = = 1 2 e x - - e - x = e x + e - x 2 = c h x c h " x = e x + e - x 2 " = 1 2 e x " + e - x " = = 1 2 e x + - e - x = e x - e - x 2 = s h x t h " x = s h x c h x " = s h " x · c h x - s h x · c h " x c h 2 x = c h 2 x - s h 2 x c h 2 x = 1 c h 2 x c t h " x = c h x s h x " = c h " x · s h x - c h x · s h " x s h 2 x = s h 2 x - c h 2 x s h 2 x = - 1 s h 2 x

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.