Степенная функция и её график. Методика изучения темы “Свойства степенной функции”. Степенная функция с нечетным отрицательным показателем


10 класс

СТЕПЕННАЯ ФУНКЦИЯ

Степенной называется функция, заданная формулой где , p некоторое действительное число.

I . Показатель - чётное натуральное число. Тогда степенная функция где n

D ( y )= (−; +).

2) Область значений функции – множество неотрицательных чисел, если:

множество неположительных чисел, если:

3) ) . Значит, функция Oy .

4) Если, то функция убывает при х (- ; 0] и возрастает при х и убывает при х \[{\mathop{lim}_{x\to +\infty } x^{2n}\ }=+\infty \]

График (рис. 2).

Рисунок 2. График функции $f\left(x\right)=x^{2n}$

Свойства степенной функции с натуральным нечетным показателем

    Область определения -- все действительные числа.

    $f\left(-x\right)={(-x)}^{2n-1}={-x}^{2n}=-f(x)$ -- функция нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- все действительные числа.

    $f"\left(x\right)=\left(x^{2n-1}\right)"=(2n-1)\cdot x^{2(n-1)}\ge 0$

    Функция возрастает на всей области определения.

    $f\left(x\right)0$, при $x\in (0,+\infty)$.

    $f{""\left(x\right)}={\left(\left(2n-1\right)\cdot x^{2\left(n-1\right)}\right)}"=2\left(2n-1\right)(n-1)\cdot x^{2n-3}$

    \ \

    Функция вогнута, при $x\in (-\infty ,0)$ и выпукла, при $x\in (0,+\infty)$.

    График (рис. 3).

Рисунок 3. График функции $f\left(x\right)=x^{2n-1}$

Степенная функция с целым показателем

Для начала введем понятие степени с целым показателем.

Определение 3

Степень действительного числа $a$ c целым показателем $n$ определяется формулой:

Рисунок 4.

Рассмотрим теперь степенную функцию с целым показателем, её свойства и график.

Определение 4

$f\left(x\right)=x^n$ ($n\in Z)$ называется степенной функцией с целым показателем.

Если степень больше нуля, то мы приходим к случаю степенной функции с натуральным показателем. Его мы уже рассмотрели выше. При $n=0$ мы получим линейную функцию $y=1$. Её рассмотрение оставим читателю. Осталось рассмотреть свойства степенной функции с отрицательным целым показателем

Свойства степенной функции с отрицательным целым показателем

    Область определения -- $\left(-\infty ,0\right)(0,+\infty)$.

    Если показатель четный, то функция четна, если нечетный, то функция нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения:

    Если показатель четный, то $(0,+\infty)$, если нечетный, то $\left(-\infty ,0\right)(0,+\infty)$.

    При нечетном показателе функция убывает, при $x\in \left(-\infty ,0\right)(0,+\infty)$. При четном показателе функция убывает при $x\in (0,+\infty)$. и возрастает, при $x\in \left(-\infty ,0\right)$.

    $f(x)\ge 0$ на всей области определения

Урок и презентация на тему: "Степенные функции. Отрицательный целый показатель. График степенной функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Интерактивное пособие "Правила и упражнения по алгебре" для 9 класса
Мультимедийное учебное пособие для 9 класса "Алгебра за 10 минут"

Вид степенной функции с отрицательным показателем

Ребята, мы продолжаем изучать числовые функции. Темой сегодняшнего урока будут также степенные функции, но уже не с натуральным показателем, а целым отрицательным.
имеет такой вид: $y=x^{-n}=\frac{1}{x^n}$.
Одну из таких функций мы прекрасно знаем – это гипербола. Ребята, вы помните график гиперболы? Постройте его самостоятельно.

Давайте посмотрим одну из функций подходящих нам и определим для нее свойства. $y=x^{-2}=\frac{1}{x^2}$.
Начнем исследование с четности. Стоит заметить, что свойство четности значительно упрощает построение графиков функции, т.к. мы можем построить половинку графика и потом просто ее отразить.
Область определения нашей функции – множество действительных чисел, кроме нуля, все мы прекрасно знаем, что на ноль делить нельзя. Область определения – симметричное множество, переходим к вычислению значения функции от отрицательного аргумента.
$f(-x)=\frac{1}{(-x)^2}=\frac{1}{x^2}=f(x)$.
Наша функция четная. Значит, мы можем построить график при $х≥0$, а потом его отразить относительно оси ординат.
Ребята, в этот раз предлагаю вместе построить график функции, как делают это во "взрослой" математике. Сначала определим свойства нашей функции, а потом по ним построим график. Будем учитывать, что $x>0$.
1. Область определения D(y)=(0;+∞).
2. Функция убывающая. Проверим это. Пусть $x1\frac{1}{x_{2}^2}$. Поскольку, мы делим на большее число, то получается, что сама функция в большем числе будет меньше, что и значит убывание.
3. Функция ограничена снизу. Очевидно, что $\frac{1}{x^2}>0$, что и значит ограниченность снизу.
Ограниченности сверху нет, так как если взять значение аргумента очень маленьким, близким к нулю, то значение функции будет стремиться к плюс бесконечности.
4. Наибольшего и наименьшего значения нет. Наибольшего значения нет, так как функция не ограничена сверху. Как же быть с наименьшим значением, ведь функция ограничена снизу.

Что значит, что функция имеет наименьшее значение?

Существует такая точка х0, что для всех х из области определения $f(x)≥f(x0)$, но наша функция убывающая на всей области определения, тогда существует такое число $х1>x0$, но $f(x1)

Графики степенной функций с отрицательными показателями

Построим график нашей функции по точкам.




График нашей функции, очень похож на график гиперболы.
Воспользуемся свойством четности и отразим график относительно оси ординат.

Напишем свойства нашей функции для всех значений х.
1) D(y)=(-∞;0)U(0;+∞).
2) Четная функция.
3) Возрастает на (-∞;0], убывает на .
Решение. Функция убывает на всей области определения, тогда своих наибольших и наименьших значений она достигает на концах отрезка. Наибольшее значение будет на левом конце отрезка $f(1)=1$, наименьшее на правом $f(3)=\frac{1}{27}$.
Ответ: Наибольшее значение равно 1, наименьшее 1/27.

Пример. Построить график функции $y=(x+2)^{-4}+1$.
Решение. График нашей функции получается из графика функции $y=x^{-4}$ переносом его на две единицы влево и одну единицу вверх.
Построим график:

Задачи для самостоятельного решения

1. Найти наименьшее и наибольшее значение функции $y=\frac{1}{x^4}$ на отрезке .
2. Построить график функции $y=(x-3)^{-5}+2$.