Самые большие астероиды и их значение. Движение астероидов. Сравнение кометы с астероидом


Если судить по фильмам-катастрофам, астероиды можно считать главными врагами человечества наряду с вирусами, зомби и безответственными политиками. Десятки фильмов рассказывают о бедствиях, которые начинаются на Земле после столкновения даже относительно небольшим небесным телом. В неполный перечень входят цунами, землетрясения, изменения климата и другие не слишком полезные человеку явления.

Вероятность столкновения Земли с астероидом существует, но она, к счастью, крайне мала. Всё-таки Вселенную вообще и Солнечную систему в частности, правильнее представлять себе как пустое пространство, в котором крупные тела вроде планет, их спутников и астероидов попадаются очень редко. Показателен такой факт: несмотря на то, что в пространстве между Марсом и Юпитером открыты тысячи больших и малых небесных тел, космические аппараты пересекают эту зону не только без повреждений, но и без угрожающих сближений с астероидами.

Историю открытия астероидов в научно-популярной литературе обычно излагают, щадя учёных. Мол, Иоганн Тициус в 18-м веке рассчитал закономерность удаления планет от Солнца, а чуть позже его тёзка Боде вычислил, что между Марсом и Юпитером должна находиться планета. Астрономы начали её искать и в 1801 году таки обнаружили. С тех пор всё и началось…

В этой версии вся выглядит закономерно и красиво, но есть ряд нюансов. Формула Тициуса оказалась удачно подобранным эмпирическим сочетанием. Астрономы действительно искали первый астероид. Барон Ксавер даже создал для этих поисков небесную полицию. Двум дюжинам астрономов были выделены равные участки неба, в которых происходили происки.

Но открыл будущую Цереру вовсе не кто-либо из «небесных полисменов», а итальянец Джузеппе Пьяцца. Астроном не искал ничего нового – он составлял каталог звёзд, и в новогоднюю ночь 1801 года случайно наткнулся на быстро двигавшуюся точку. Мало того, Пьяцца сразу же потерял своё открытие, едва успев назвать новую, как он думал, планету, Церерой. Помог Карл Гаусс. С помощью математических вычислений он нашёл место, где нужно искать пополнение в Солнечной системе, и Цереру открыли заново. То есть открытие Пьяццы в какой-то мере похоже на открытие Колумбом Америки – оба искали не то, но значения этих открытий случайность никак не принижает.

Астероидов становится больше

С 1802 года в астрономическом сообществе шли два параллельных процесса. Астрономы открывали множество новых астероидов, параллельно дискутируя об их статусе и происхождении. Их предлагали считать малыми планетами, изобрели даже точный, но не звучащий термин «зенареиды» («находящиеся между Юпитером и Марсом»). Но победило ныне используемое название. Оно было нейтральным – «астероидом» можно назвать любое тело, независимо от его относительного размера, происхождения, состава и орбиты. А практические поиски привели к тому, что в Солнечной системе обнаружено уже порядка 300 тысяч астероидов.

Самые большие астероиды

Понятно, что в гигантском количестве открытых астероидов подавляющее большинство составляют небольшие объекты. Все почести, в том числе и собственные имена, достаются крупным астероидам. Если брать во внимание размеры, перечень самых крупных астероидов будет примерно таким:

10. Евфросина

Астероид Евфросина, несмотря на близость к Земле и большой размер, даже с самого короткого расстояния трудно рассмотреть с Земли – из-за большого количества углерода в составе он очень тёмный. Астероид диаметром 256 километров движется по орбите, близкой к вертикальной к плоскости эклиптики, и завершает оборот вокруг Солнца за 5,6 года.

Гектор был открыт в 1907 году, но из-за большого расстояния от Земли (он находится ближе к Юпитеру) и низкой отражающей способность толком рассмотреть его смогли только в 21-м веке. Оказалось, что астероид с максимальной длиной 370 километров по форме похож на фасоль или гантель, причём две его массивные части может соединять только гравитация.

Чтобы облететь Солнце, Гектору требуется почти 12 лет. При этом скорость собственного вращения близка к скорости других астероидов и составляет меньше 7 часов.

8. Сильвия

Строго говоря, Сильвия это не одиночный астероид, а система с двумя спутниками – Ромулом и Ремом. Да и главный астероид это, скорее всего, не монолит, а собранные вместе гравитацией мелкие камни – у Сильвии слишком мала средняя плотность.

Система Сильвии делает оборот вокруг Солнца за 6,5 лет, а вокруг своей оси чуть дольше, чем за 5 часов. В ходе движения по орбите размер Сильвии может изменяться на 10%.

7. Давида

Этот астероид пришлось слегка переименовать в угоду традициям. Открывший его американец Раймонд Дуган дал своему открытию имя Дэвид в честь профессора Дэвида Тодда. Но была традиция давать астероидам женские имена, и название было скорректировано.

С помощью крупнейших на тот момент телескопов, расположенных на Гавайях, не только определили размер Давиды (минимум 231 километр), но и разглядели на поверхности огромный кратер. Характерно, что в ходе расчётов массы Давиды результаты давали двукратный разброс. Год на этом астероиде длится 5,6 лет, а сутки чуть больше 5 часов.

6. Европа

Астероид Европа легче своих коллег по группе крупных астероидов. Это позволило астрономам предположить, что он состоит из пористых веществ. А из-за слабого блеска считается, что это соединения, содержащие углерод.

Астероид диаметром 302,5 километра вращается по вытянутой орбите. Разница в расстоянии до Солнца колеблется от 413 до 512 млн. километров. Сутки на Европе длятся 5,6 часа, а год – 5,5 земных.

Этот астероид до сих пор остаётся большой загадкой. Известно, что диаметр его составляет 326 километров, оборот вокруг Солнца Интерамния делает за 5,4 года, а сутки длятся почти 8 часов. Однако из-за удалённости и очень тёмной поверхности никаких сведений о составе астероида астрономы не имеют. Даже общие физические сведения были получены не прямыми наблюдениями, а во время покрытия Интерамнией яркой звезды.

Астероид, названный в честь богини здоровья, был открыт довольно поздно – в 1849 году. Гигея довольно сильно, по сравнению с другими крупными астероидами, удалена от Земли, а поверхность её отражает мало света.

Год на Гигее, имеющей диаметр 407 километров, длится 5,5 земных лет, а вот сутки на три часа длиннее земных.

Паллада занимает среди астероидов третье место по размеру, и второе по времени открытия – Генрих Ольберс обнаружил её в 1802 году. Долгое время ей принадлежало второе место в обеих категориях, но после уточнений Паллада стала третьей.

Диаметр Паллады составляет 512 км. Она вращается по наклонённой и сильно вытянутой в овал орбите, поэтому год на ней длится более 4,5 земных лет.

Занимающая второе место среди астероидов Веста обошла Палладу в размерах совсем незначительно – её диаметр в среднем составляет 525 километров, а максимальное его значение – 573 километра (Веста имеет довольно неправильную форму).

На поверхности астероида много глубоких кратеров, в том числе и кратер Реясильвия, диметр которого сопоставим с диаметром самой Весты. В центре кратера на 22 километра ввысь вздымается гора. Учёные до сих пор не знают, как астероид пережил удар столь чудовищной силы.

Вес Весты показывает, что её ядро состоит из металлов. Возможно, в будущем астероид, который сейчас вращается вокруг Солнца со скоростью один оборот за 42 земных месяца, станет источником сырья для земной металлургии.

Самый большой астероид официально имел такой статус до 2006 года. Открытая Джузеппе Пьяцца Церера, 200 лет просуществовав как астероид, стала малой планетой. Так решил Международный астрономический союз. Однако при всём уважении к голосованию астрономов, до планеты Церера никак не дотягивает – её диаметр 950 километров, внушительный в компании астероидов, почти впятеро меньше Меркурия, ставшего после дисквалификации Протона самой маленькой планетой.

В отличие от мелких астероидов, Церера имеет почти правильную форму шара. Примерно на треть астероид состоит изо льда, остальное — руды, содержащие железо, и карбонаты. Год на астероиде, вращающемся вокруг Солнца между орбитами Юпитера и Марса, длится более 4,5 земных лет, а сутки короче земных — оборот вокруг своей оси Церера делает за 9 часов.

Одним из намечаемых направлений исследований космоса в НАСА является изучение астероидов. Что планируют искать на этих голых космических глыбах, какие тайны в себе таят эти безмолвные куски камня?

В настоящее время учеными достаточно хорошо изучены самые большие астероиды и их движение. Кратко рассказать об этих телах Солнечной системы невозможно (в настоящее время их обнаружено более семисот тысяч). Откуда же взялись и что представляют из себя астероиды?

Планета номер «четыре с половиной»

Уже в восемнадцатом веке астрономам были относительно хорошо известны масштабы и размеры Солнечной системы. Исследователи Тициус и Бозе обратили внимание, что линейка расстояний планет от светила укладывается в правильную математическую последовательность. Вот только в одном месте теория давала сбой. Четыре первые планеты: Меркурий, Венера, Земля и Марс соответствовали математической модели полностью, а затем…

Юпитер, пятая планета, занимала место шестой. Между Марсом и Юпитером не хватало еще одного небесного тела.

Планеты в Солнечной системе, не считая нашей звезды, тела самые большие. Астероиды и их движение были открыты и систематизированы позже. А в тот момент этот сбой в последовательности стал настоящим вызовом для астрономов.

Охота за планетой «№ 4 ½» проходила не без драматизма и увенчалась успехом в 1801 году. Итальянский ученый Пьяцци поздравил землян с Новым, 1801 годом, открыв 1 января первую маленькую планету, названную впоследствии в честь древнегреческой богини плодородия Церерой.

Несостоявшаяся планета или катастрофа вселенского масштаба

Практически следом был открыт второй астероид Паллада. Затем еще два: Юнона и Веста. Потихоньку определялась область системы, в которой расположены самые большие астероиды. Их движение наводило на мысль, что все они - части чего-то большого.

Так возникла теория о существовании древней планеты Фаэтон, вращавшейся по орбите, расположенной между планетами Марс и Юпитер, и разрушенной в результате некоего космического катаклизма.

Не упустили шанс и уфологи, куда ж без них. По их мнению, жители именно Фаэтона посещали нашу планету, являясь аборигенам в виде богов. Они и научили наших доисторических предков письму, математике и прочим наукам, ну и, естественно, построили древнеегипетские пирамиды.

А затем Фаэтон пал жертвой самих фаэтонян, заигравшихся с каким-то своим супероружием.

Однако поздние исследования, проведенные в том числе автоматическими межпланетными зондами НАСА, показали, что красивая теория, увы, несостоятельна.

По современным представлениям между Марсом и Юпитером вращаются остатки вещества протопланетного диска, которого не хватило для формирования полноценной планеты. Да и мощнейшее гравитационное поле гиганта Юпитера не позволило бы образоваться более или менее крупному небесному телу.

Плюс две малые минус одна большая

Первый открытый астероид Церера всегда выделялся среди остальных. В нем, как выяснилось позднее, сосредоточена треть массы всего пояса астероидов. При диаметре около 1000 км он - единственный «обитатель» пояса - имеет массу, достаточную для гидростатического равновесия (образования шарообразной формы).

Также имеется и геология, обусловленная погружением более тяжелых компонентов, а этим из космических тел могут похвастать только самые большие.

Астероиды и их движение подверглись пристальному изучению с появлением гигантских зеркальных телескопов, их стали открывать по нескольку тысяч в год. И чем быстрее росла их база, тем очевиднее становилась уникальность в астероидном поясе Цереры.

В 2006 году произошло событие, повысившее статус этого планетоида. Годом ранее были открыты несколько транснептуновых объектов, сопоставимых размерами с Плутоном, который до тех пор считался девятой планетой Солнечной системы.

Так, было решено лишить Плутон «звания» планеты. Отныне все подобные тела стали именоваться «карликовая планета». Под данное определение подошла и Церера. Таким образом, в солнечной семье стало больше на две карликовые планеты за счет одной полноценной и одного астероида.

Орбиты астероидов

Самое «оживленное» движение астероидов сосредоточено, как уже указывалось, между Марсом и Юпитером. Однако форма орбит большинства из них заметно отличается от орбит планет, движущихся по почти идеальным окружностям. Так, если второй по величине астероид Солнечной системы Веста имеет эксцентриситет орбиты 0,089 и постоянно находится в поясе, то, Эрос, например, движется иначе.

В высшей точке орбиты он находится, как ему и положено, в поясе астероидов, а затем, пересекая орбиту Марса, Эрос устремляется к Земле, не доходя до ее орбиты «каких-то» 20 млн километров.

Астероидом же с самой вытянутой траекторией считается 2005НС4. В дальней точке он «улетает» далеко за орбиту Марса, в перигелии же подходит к Солнцу в 7(!) раз ближе Меркурия.

Опасность для Земли

Таких космических «камешков» разных размеров, пересекающих орбиту Земли, а следовательно, теоретически способных врезаться в нас, множество. Это одна из причин, заставляющая ученых всех стран подробно изучать движение астероидов.

Основные сведения об орбитах самых крупных из них были получены много десятилетий назад. К счастью, среди них нет кандидатов на столкновение с нашей планетой в ближайшие несколько миллионов лет.

Этого, увы, не скажешь о более мелких космических телах размером от сотни метров и менее. Несмотря на то что количество открытых астероидов приближается к миллиону, астрономы постоянно обнаруживают новые и новые. К тому же пояс астероидов - довольно «перенаселенный райончик» Солнечной системы. Столкновения их друг с другом запросто могут резко изменить орбиту относительно небольшой скалы, как из пращи, направив ее в одну из планет.

Планеты сокровищ

Однако, похоже, что краткие данные о движении астероидов могут со временем начать появляться в новостях экономики. В последнее время интерес к их изучению обусловлен планами (пока, правда, весьма далекими) на разработку их в будущем как месторождений полезных ископаемых.

Так приблизительно подсчитано, что в недрах Эроса содержится редкоземельных металлов в несколько раз больше, чем добыла и использовала за всю свою историю человеческая цивилизация.

Однако для гипотетической разработки залежей золота и платины на поверхности космического тела желательно, чтобы там имелась хоть небольшая сила тяжести. Этим качеством обладают лишь самые большие астероиды. И их движение и стабильная, почти круговая орбита делают, например, Цереру и Весту, первыми кандидатами на освоение. Не исключено, что через пару-тройку сотен лет на Эрос будут летать молодые пары в свадебное путешествие, недаром же такое название ему придумали…

Астероиды представляют собой небесные тела, которые были образованы за счет взаимного притяжения плотного газа и пыли, вращающихся по орбите вокруг нашего Солнца на раннем этапе его формирования. Некоторые из таких объектов, вроде астероида , достигли достаточной массы, чтобы сформировать расплавленное ядро. В момент достижения Юпитера своей массы, большая часть планетозималей (будущих протопланет) была расколота и выброшена с изначального пояса астероидов между Марсом и . В эту эпоху сформировалась часть астероидов за счет столкновения массивных тел в пределах воздействия гравитационного поля Юпитера.

Классификация по орбитам

Астероиды классифицируются по таким признакам как видимый отражения солнечного света и характеристики орбит.

Согласно характеристикам орбит астероиды объединяют в группы, среди которых могут выделять семейства. Группой астероидов считается некоторое число таких тел, характеристики орбит которых схожи, то бишь: полуось, эксцентриситет и орбитальный наклон. Семейством астероидов следует считать группу астероидов, которые не просто движутся по близким орбитам, но вероятно являются фрагментами одного большого тела, и образованы в результате его раскола.

Наиболее крупные из известных семей могут насчитывать несколько сотен астероидов, наиболее компактные же – в пределах десяти. Примерно 34% тел астероидов являются членами семей астероидов.

В результате образования большинства групп астероидов Солнечной системы, их родительское тело было уничтожено, однако встречаются и такие группы, родительское тело которых уцелело (например ).

Классификация по спектру

Спектральная классификация основывается на спектре электромагнитного излучения, который является результатом отражения астероидом солнечного света. Регистрация и обработка данного спектра дает возможность изучить состав небесного тела и определить астероид в один из следующих классов:

  • Группа углеродных астероидов или C-группа. Представители данной группы состоят по большей части из углерода, а также из элементов, которые входили в состав протопланетного диска нашей Солнечной системы на первых этапах ее формирования. Водород и гелий, а также другие летучие элементы практически отсутствуют в углеродных астероидах, однако возможно наличие различных полезных ископаемых. Другой отличительной чертой подобных тел является низкое альбедо – отражающая способность, что требует использования более мощных инструментов наблюдения, нежели при исследовании астероидов других групп. Более 75% астероидов Солнечной системы являются представителями C-группы. Наиболее известными телами данной группы есть Гигея, Паллада, и некогда — Церера.
  • Группа кремниевых астероидов или S-группа. Астероиды такого типа состоят в основном из железа, магния и некоторых других каменистых минералов. По этой причине кремниевые астероиды также называются каменными. Такие тела имеет достаточно высокий показатель альбедо, что позволяет наблюдать за некоторыми из них (например Ирида) просто при помощи бинокля. Число кремниевых астероидов в Солнечной системе составляет 17% от общего количества, и они наиболее распространены на расстоянии до 3-х астрономических единиц от Солнца. Крупнейшие представители S-группы: Юнона, Амфитрита и Геркулина.

  • Введение
  • Астероиды вблизи Земли
  • Движение астероидов
  • Температура астероидов
  • Состав астероидного вещества
  • Формирование астероидов
  • Заключение
  • Литература

Введение

О том, что в Солнечной системе между орбитами Марса и Юпитера движутся многочисленные мелкие тела, самые крупные из которых по сравнению с планетами всего лишь каменные глыбы, узнали менее 200 лет назад. Их открытие явилось закономерным шагом на пути познания окружающего нас мира. Путь этот не был легким и прямолинейным.

Кто в эпоху открытия первых астероидов мог предположить, что эти малые тела Солнечной системы, тела, о которых еще недавно нередко говорили с оттенком пренебрежения, станут объектом внимания специалистов самых различных областей: естествознания, космогонии, астрофизики, небесной механики, физики, химии, геологии, минералогии, газовой динамики и аэромеханики? Тогда до этого было еще очень далеко. Еще предстояло осознать, что стоит лишь наклониться, чтобы поднять с земли кусочек астероида - метеорит. Наука о метеоритах - метеоритика - зародилась в начала XIX века, когда были открыты и их родительские тела - астероиды. Но в дальнейшем она развивалась совершенно независимо. Метеориты изучались геологами, металлургами и минералогами, астероиды - астрономами, преимущественно небесными механиками.

Трудно привести другой пример столь абсурдной ситуации: две разные науки исследуют одни и те же объекты, а между ними практически не возникает никаких точек соприкосновения, не происходит обмена достижениями. Это отнюдь не способствует осмыслению получаемых результатов. Но сделать ничего нельзя, и так все и остается, пока новые методы исследований - экспериментальные и теоретические - не поднимут уровень исследований настолько, что создадут реальную основу для слияния обеих наук в одну.

Это произошло в начале 70-х годов XX в., и мы стали свидетелями нового качественного скачка в познании астероидов. Скачок этот произошел не без помощи космонавтики, хотя космические аппараты еще не опускались на астероиды и еще не получено даже космического снимка хотя бы одного из них. Это - дело будущего, по-видимому, уже недалекого. А пока перед нами встают новые вопросы и ждут своего решения.

Астероиды вблизи Земли

Почти 3/4 века люди не подозревали, что не все астероиды движутся между орбитами Марса и Юпитера. Но вот ранним утром 14 июня 1873 г. Джеймс Уотсон на обсерватории Энн Арбор (США) открыл астероид «Аэрта». За этим объектом удалось следить всего три недели, а потом его потеряли. Однако результаты определения орбиты, хотя и неточной, убедительно свидетельствовали, что Аэрта движется внутри орбиты Марса.

Астероиды, которые бы приближались к орбите Земли, оставались неизвестны до конца XIX века. Теперь их число превышает 80.

Первый астероид вблизи Земли был открыт только 13 августа 1898 г. В этот день Густав Витт на обсерватории Урания в Берлине обнаружил слабый объект, быстро перемещающийся среди звезд. Большая скорость свидетельствовала о его необычайной близости к Земле, а слабый блеск близкого предмета - об исключительно малых размерах. Это был Эрос, первый астероид-малютка поперечником менее 25 км. В год его открытия он прошел на расстоянии 22 млн. км от Земли. Его орбита оказалась не похожа ни на одну до сих пор известную.

Движение астероидов

Все открытые до сих пор астероиды обладают прямым движением: они движутся вокруг Солнца в ту же сторону, что и большие планеты. У подавляющего большинства астероидов орбиты не сильно отличаются друг от друга: они слабо эксцентричны и имеют малый или умеренный наклон. Поэтому почти все астероиды движутся, оставаясь в пределах тороидального кольца. Границы кольца несколько условны: пространственная плотность астероидов (число астероидов в единице объема) падает по мере удаления от центральной части. У немногих астероидов из-за значительного эксцентриситета и наклона орбиты петля, выходит за пределы этой области или даже целиком лежит вне неё. Поэтому астероиды встречаются и вдали за пределами кольца.

Объем пространства, занятого кольцом-тором, где движется 98% всех астероидов, огромен - около 1,61026 км3. Для сравнения укажем, что объем Земли составляет всего 1012 км3.

Если быть совсем строгими, то нужно сказать, что путь астероида в пространстве представляет собой не эллипсы, а незамкнутые квазиэллиптические витки, укладывающиеся рядом друг с другом. Лишь изредка - при сближении с планетой - витки заметно отклоняются один от другого. Планеты возмущают, конечно, движение не только астероидов, но и друг друга. Однако возмущения, испытываемые самими планетами, малы и не меняют структуры Солнечной системы. Они не могут привести к столкновению планет друг с другом. С астероидами дело обстоит иначе. Астероиды отклоняются со своего пути то в одну, то в другую сторону. Чем дальше, тем больше становятся эти отклонения: ведь планеты непрерывно "тянут" астероид, каждая к себе, но сильнее всех Юпитер. Наблюдения астероидов охватывают еще слишком малые промежутки времени, чтобы можно было выявить существенные изменения орбит большинства астероидов, за исключением отдельных редких случаев. Поэтому наши представления об эволюции их орбит основаны на теоретических соображениях. Коротко они сводятся к следующему.

Орбита каждого астероида колеблется около своего среднего положения, затрачивая на каждое колебание несколько десятков или сотен лет. Синхронно меняются с небольшой амплитудой ее полуось, эксцентриситет и наклон. Перигелий и афелий то приближаются к Солнцу, то удаляются от него. Эти колебания включаются как составная часть в колебания большего периода - тысячи или десятки тысяч лет. Они имеют несколько другой характер. Большая полуось не испытывает дополнительных изменений. Зато амплитуды колебаний эксцентриситета и наклона могут быть намного больше. При таких масштабах времени можно уже не рассматривать мгновенных положений планет на орбитах: как в ускоренном фильме астероид и планета оказываются как бы размазанными по своим орбитам. Становится целесообразным рассматривать их как гравитирующие кольца. Наклон астероидного кольца к плоскости эклиптики, где находятся планетные кольца - источник возмущающих сил, - приводит к тому, что астероидное кольцо ведет себя подобно волчку. Только картина оказывается более сложной, потому что орбита астероида не является жесткой и ее форма меняется с течением времени.

Планетные возмущения приводят к непрерывному перемешиванию орбит астероидов, а стало быть, и к перемешиванию движущихся по ним объектов. Это делает возможным столкновения астероидов друг с другом. За минувшие 4,5 млрд. лет, с тех пор как существуют астероиды, они испытали много столкновений друг с другом. Наклоны и эксцентриситеты орбит приводят к непараллельности их взаимных движений, и скорость, с которой астероиды проносятся один мимо другого, в среднем составляет около 5 км/с. Столкновения с такими скоростями ведут к разрушению тел.

Форма и вращение астероидов

Астероиды так малы, что сила тяжести на них ничтожна. Она не в состоянии придать им форму шара, какую придает планетам и их большим спутникам, сминая и утрамбовывая их вещество. Большую роль при этом играет явление текучести. Высокие горы на Земле у подошвы "расползаются", так как прочность пород оказывается недостаточной для того, чтобы выдержать нагрузки во многие тонны на 1 см3, и камень, не дробясь, не раскалываясь, течет, хотя и очень медленно.

На астероидах поперечником до 300-400 км из-за малого веса подобное явление текучести вовсе отсутствует, а на самых крупных астероидах оно происходит чрезвычайно медленно, да и то лишь в их недрах. Поэтому "утрамбованы" силой тяжести могут быть лишь глубокие недра немногих крупных астероидов. Если вещество астероидов не проходило стадии плавления, то оно должно было остаться "плохо упакованным", примерно, каким возникло на стадии аккумуляции в протопланетном облаке. Только столкновения тел друг с другом могли привести к тому, что вещество постепенно уминалось, становясь менее рыхлым. Впрочем, новые столкновения должны были дробить спрессованное вещество.

Малая сила тяжести позволяет разбитым астероидам существовать в виде агрегатов, состоящих из отдельных блоков, удерживающихся друг около друга силами тяготения, но не сливающихся друг с другом. По той же причине не сливаются с ними и опустившиеся на поверхность астероидов их спутники. Луна и Земля, соприкоснувшись друг с другом, слились бы, как сливаются (хотя и по другой причине) соприкоснувшиеся капли, и через некоторое время получилось бы одно, тоже шарообразное тело, по форме которого нельзя было бы догадаться, из чего оно получилось.

Впрочем, все планеты Солнечной системы на заключительном этапе формирования вбирали в себя довольно крупные тела, не сумевшие превратиться в самостоятельные планеты или спутники. Теперь их следов уже нет.

Лишь самые крупные астероиды могут сохранять свою шарообразную форму, приобретенную в период формирования, если им удастся избежать столкновения с немногочисленными телами сравнимых размеров. Столкновения с более мелкими телами не смогут существенно изменить ее. Мелкие же астероиды должны иметь и действительно имеют неправильную форму, сложившуюся в результате многих столкновений и не подвергавшуюся в дальнейшем выравниванию под действием силы тяжести. Кратеры, возникшие на поверхности даже самых крупных астероидов при столкновении с мелкими телами, "не заплывают" с течением времени. Они сохраняются до тех пор, пока не будут стерты при следующих ударах об астероид мелких тел или сразу уничтожены ударом крупного тела. Поэтому горы на астероидах могут быть гораздо выше, а впадины гораздо глубже, чем на Земле и других планетах: среднее отклонение от уровня сглаженной поверхности на крупных астроидах составляет 10 км и более, о чем свидетельствуют радиолокационные наблюдения астероидов.

Неправильная форма астероидов подтверждается и тем, что их блеск необычайно быстро падает с ростом фазового угла. У Луны и Меркурия аналогичное уменьшение блеска вполне объясняется только уменьшением видимой с Земли доли освещенной Солнцем поверхности: тени гор и впадин оказывают слабое влияние на общий блеск. Иначе обстоит дело с астероидами. Одним лишь изменением освещенной Солнцем доли поверхности астероида столь быстрое изменение их блеска, которое наблюдается, объяснить нельзя. Основная причина (особенно у астероидов малых размеров) такого характера изменения блеска заключается в их неправильной форме и крайней степени “изрытости”, из-за чего на освещенной Солнцем стороне одни участки поверхности экранируют другие от солнечных лучей.

Температура астероидов

Астероиды - насквозь холодные, безжизненные тела. В далеком прошлом их недра могли быть теплыми и даже горячими за счет радиоактивных или каких-то иных источников тепла. С тех пор они уже давно остыли. Впрочем, внутренний жар никогда не согревал поверхности: поток тепла из недр был неощутимо мал. Поверхностные слои оставались холодными, и лишь столкновения время от времени вызывали кратковременный локальный разогрев.

Единственным постоянным источником тепла для астероидов остается Солнце, далекое и поэтому греющее очень плохо. Нагретый астероид излучает в космическое пространство тепловую энергию, причем тем интенсивнее, чем сильнее он нагрет. Потери покрываются поглощаемой частью солнечной энергии, падающей на астероид.

Если усреднить температуру по всей освещенной поверхности, получим, что у астероидов сферической формы средняя температура освещенной поверхности в 1,2 раза ниже, чем температура в подсолнечной точке.

Из-за вращения астероидов температура их поверхности быстро меняется. Нагретые Солнцем участки поверхности быстро остывают из-за низкой теплоемкости и малой теплопроводности слагающего их вещества. В результате по поверхности астероида бежит тепловая волна. Она быстро затухает с глубиной, не проникая в глубину даже на несколько десятков сантиметров. Глубже температура вещества оказывается практически постоянной, такой же, как в недрах астероида - на несколько десятков градусов ниже средней температуры освещенной Солнцем поверхности. У тел, движущихся в кольце астероидов, ее грубо можно принять равной 100-150 К.

Как ни мала тепловая инерция поверхностных слоев астероида, все же, если быть совсем строгими, то следует сказать, что температура не успевает принимать равновесного значения с изменением условий освещения. Утренняя сторона, не успевая согреваться, всегда чуть-чуть холоднее, чем следовало бы, а вечерняя сторона оказывается чуть-чуть теплее, не успевая остывать. Относительно подсолнечной точки возникает легкая асимметрия в распределении температур.

Максимум теплового излучения астероидов лежит в области длин волн порядка 20 мкм. Поэтому их инфракрасные спектры должны выглядеть как непрерывное излучение с интенсивностью, монотонно убывающей в обе стороны от максимума. Это подтверждается наблюдениями, проведенными О. Хансеном в диапазоне 8-20 мкм. Однако, когда Хансен попытался на основании этих наблюдений определить температуру астероидов, она оказалась выше расчетной (около 240К), и причина этого до сих пор не ясна.

Низкая температура тел, движущихся в кольце астероидов, означает, что диффузия в астероидном веществе "заморожена". Атомы не способны покидать свои места. Их взаимное расположение сохраняется неизменным на протяжении миллиардов лет. Изоляция способна вызвать к жизни диффузию только у тех астероидов, которые сильно приближаются к Солнцу, но лишь в поверхностных слоях и на короткое время.

Состав астероидного вещества.

Метеориты крайне разнообразны, как разнообразны и их родительские тела - астероиды. В то же время их минеральный состав очень скуден. Метеориты состоят, в основном, из железо-магниевых силикатов. Они присутствуют в виде мелких кристалликов или в виде стекла, обычно частично перекристаллизованного. Другой основной компонент - никелистое железо, которое представляет собой твердый раствор никеля в железе, и, как в любом растворе, содержание никеля в железе бывает различно - от 6-7% до 30-50%. Изредка встречается и безникелистое железо. Иногда в значительных количествах присутствуют сульфиды железа. Прочие же минералы находятся в малых количествах. Удалось выявить всего около 150 минералов, и, хотя даже теперь открывают все новые и новые, ясно, что число минералов метеоритов очень мало по сравнению с обилием их в горных породах Земли, где их выявлено более 1000. Это свидетельствует о примитивном, неразвитом характере метеоритного вещества. Многие минералы присутствуют не во всех метеоритах, а лишь в некоторых из них.

Наиболее распространены среди метеоритов хондриты. Это каменные метеориты от светло-серой до очень темной окраски с удивительной структурой: они содержат округлые зерна - хондры, иногда хорошо видимые на поверхности разлома и легко выкрашивающиеся из метеорита. Размеры хондр различны - от микроскопических до сантиметровых. Они занимают значительный объем метеорита, иногда до половины его, и слабо сцементированы межхондровым веществом - матрицей. Состав матрицы обычно идентичен с составом хондр, а иногда и отличается от него. По поводу происхождения хондр существует много гипотез, но все они спорные.

Формирование астероидов

В период формирования Солнца условия не были, конечно, одинаковыми на разных расстояниях от Солнца и менялись с течением времени. Вещество оставалось холодным только вдали от Солнца. Вблизи него было сильно прогрето и пыль подвергалась полному или частичному испарению. Лишь позднее, когда газ остыл, она сконденсировалась снова, но большая часть летучих веществ, содержащихся в межзвездных пылинках, оказалась потеряна и в новую пыль уже не вошла. Эволюция протопланетного диска привела к формированию в нем планетезималей, из которых потом выросли планеты. Состав планетезималей, формировавшихся на разных гелиоцентрических расстояниях, из-за разного состава пыли, пошедшей на их постройку, был различным.

Так уж случилось, что астероиды - это планетезимали, сформировавшиеся на границе горячей и холодной зоны протопланетного диска, сохранившиеся до наших дней.

Астероиды формировались в протопланетном облаке как рыхлые агрегаты. Малая сила тяжести не могла спрессовать сгустившиеся из пыли планетезимали. За счет радиоактивного тепла они разогревались. Этот разогрев, как показали расчеты Дж. Вуда, шел весьма эффективно: ведь рыхлые тела хорошо удерживают тепло. Разогрев начался еще на стадии роста астероидов. Их вещество в центральных частях грелось, спекалось, и, может быть, даже плавилось, а на поверхности астероидов все еще продолжала высыпаться пыль, пополняя рыхлый, теплоизолирующий слой. Основным источником разогрева сейчас принято считать алюминий-26.

Столкновения астероидов между собой на первых порах тоже вели к уплотнению их вещества. Астероиды становились компактными телами. Но в дальнейшем возмущения от выросших планет привели к росту скоростей, с которыми происходили столкновения. В результате уже более или менее компактные тела были разбиты. Столкновения повторялись неоднократно, дробя, встряхивая, перемешивая, сваривая обломки, и снова дробя. Вот почему современные астероиды представляют собой, скорее всего, плохо “упакованные” глыбы.

К земной орбите мелкие астероидные обломки, поступают, конечно, из кольца астероидов. Это происходит благодаря еще не вполне ясному в деталях механизму последовательной резонансной раскачки орбит под действием планетных возмущений. Но раскачка происходит лишь в некоторых зонах кольца. Астероиды из разных мест кольца поступают неодинаково эффективно, и обломки в окрестностях земной орбиты могут вовсе не быть представителями тех объектов, которые движутся за орбитой Марса.

А в земной атмосфере выживают только самые медленные и самые прочные из них, что приводит к дальнейшему отбору. Поэтому в наших коллекциях, несомненно, отсутствуют многие разновидности астероидного вещества, и, возможно, что представление об астероидном веществе, как о веществе плотном и компактном, не что иное, как устаревшее, навеянное метеоритами заблуждение.

Заключение

Как бы ни были велики успехи изучения астероидов сегодня, будущее принадлежит, вероятно, исследованиям с помощью космических аппаратов. Они могут снять многочисленные трудности, стоящие перед исследователями, но, можно не сомневаться, поставят перед ними и новые проблемы.

В настоящее время много внимания в обществе уделяется проблеме возможного столкновения астероидов различного размера с Землёй, необходимости построения глобальной системы слежения и оповещения об опасных астероидах, методах противодействия столкновениям. Действительно, удар о Землю астероида достаточно большого размера и массы вполне может привести к исчезновению человеческой цивилизации и природы в нынешнем её состоянии. Но вероятность такого столкновения, к счастью, очень мала.

Литература

1. Дагаев М. М., Чаругин В. М. Астрофизика. - М.: Просвещение, 1988.

2. Кабардин О.Ф. Физика. – М.: Просвещение, 1988.

3. Рябов Ю. А. Движение небесных тел. – М.: Наука, 1988.

4. Симоненко А. Н. Астероиды или тернистые пути исследований. – М.: Наука, 1985.

Источник - http://astrogalaxy.ru

Смотрите также раздел - скачать астрономические книги бесплатно

Смотрите также раздел - скачать астрономические статьи бесплатно

Смотрите также раздел - купить в сети Интернет

Смотрите также раздел - статьи из научных журналов

Мелкие планеты

Галактика населена множеством мелких планет-астероидов. Астероиды – это твердые космические тела, движущиеся подобно планетам по эллиптическим орбитам вокруг Солнца. Термин «астероид», что значит «звездноподобный», ввел известный астроном своего времени Уильям Гершель (1738-1822), что бы характеризовать эти объекты при наблюдении за ними в телескоп. Астероиды настолько малы, что даже с помощью самых мощных телескопов и у самых больших астероидов, невозможно различить видимые диски.

Астероиды выглядят маленькими точечными источниками света, хотя, как и все остальные планеты, сами его не излучают, а только отражают свет, падающий от Солнца. Самый крупный из всех астероидов - Церера. Был открыт сицилийским астрономом Джузеппе Пиацци из Палермо. Ночью 1 января 1801 года, когда на Земле встречали Новый год 19 столетия, Пиацци наблюдал звезды в зодиакальном созвездии Тельца.

Первый астероид

Вдруг он заметил, что между орбитами Юпитера и Марса одна из звезд переместилась к западу и движется. Стало быть, это не звезда, а какое-то иное небесное тело, но у этого тела нет, ни заметного диска, которым должна бы обладать планета, ни туманного вида, характерного для комет... Пиацци назвал свое детище Церерой в честь древнеримской богини земледелия и плодородия, считавшийся покровительницей Сицилии.

Этот первый, обнаруженный астрономом астероид, оказался еще и самым большим астероидом в Солнечной системе, его диаметр составляет 932 километра. А масса 1,17×10 21 килограмм, что составляет примерно третью часть от всей массы пояса астероидов.

Орбита Цереры находится на расстоянии 2,77 астрономических единиц от Солнца и пролегает в главном поясе астероидов, причем расстояние Цереры от Солнца колеблется от 2,55 до 3,05 а. е. Яркость астероида равна максимальной звездной величине - 6,9, хотя альбедо (характеристика отражательной способности поверхности) Цереры составляет всего лишь 9%.

Период вращения равен 9 часам, и в течение этого времени цвет и яркость изменяются очень незначительно (это наводит на верную мысль, что у этого астероида сферическая форма и серый однородный цвет).

В настоящее время

Современной астрономической наукой открыто около 20 000 астероидов, но только примерно 10 000 из них зарегистрированы, то есть им даны номера и имена. И основная масса этих астероидов находится между орбитами Юпитера и Марса на расстоянии 2,2-3,2 а. е. от Солнца.

На первых снимках астероидов, сделанных при помощи космических аппаратов, видно, что поверхность этих космических тел изрыта воронками и кратерами разных размеров. Предполагается, что такая поверхность малых планет сформировалась в результате столкновения астероидов с другими небесными телами.