Пути фиксации СО2 при фотосинтезе. С4-путь фотосинтеза (цикл хетча и слэка) Методы учета фотосинтеза: качественные и количественные


Большинство растений усваивает неорганический углерод именно по пути цикла Кальвина. Однако довольно большая группа растений (около 500 видов) тропического происхождения выработала в процессе эволюции некоторую модификацию процесса, усваивая неорганический углерод путем образования в результате его акцепции четырехуглеродных соединений. Это растения, приспособившиеся к фотосинтезу в условиях повышенной температуры воздуха и избыточной освещенности, а также пониженной влажности почвы (засухи). Из культурных растений обладают таким метаболитическим процессом кукуруза, просо, сорго, сахарный тростник. У ряда сорных растений также наблюдается именно эта особенность метаболизма (свинорой, просо куриное, щирица) и т.д.

Особенностью анатомического строения таких растений является наличие фотосинтезирующих клеток двух типов, которые располагаются в виде концентрических кругов - радиально расположенные вокруг проводящих пучков клетки обкладочной паренхимы и мезофилла. Этот тип анатомического строения называется кранц-типом (от немецкого Кranz -венок).

Этот тип метаболизма был изучен в 60-е годы прошлого века, большую роль сыграли при этом исследования советских ученых Карпилова, Незговоровой, Тарчевского, а также австралийских ученых Хэтча и Слэка. Именно они предложили законченную схему цикла, поэтому принято этот процесс называть также циклом Хэтча-Слэка-Карпилова.

Процесс происходит в два этапа: поступающий в мезофилл СО 2 вступает в соединение с трехуглеродным соединением (ФЕП) - фосфоенолпировиноградной кислотой - которая превращается в четырехуглеродное соединение. Это и есть ключевой момент процесса, из-за которого он и получил свое название, так как неорганический углерод, акцептируясь трехуглеродным соединением, превращается в четырехуглеродное соединение. В зависимости от того в какое именно четырехуглеродное соединение превращается неорганический углерод различают три группы растений:

НАДФ-МДГ образуют яблочную кислоту при участии фермента малатдегидрогеназы, а затем пировиноградной кислоты,

НАД-МДГ образуют аспарагиновую кислоту и аланин,

ФЕП-КК образуют аспарагиновую кислоту и фосфоенолпировиноградную кислоту.

Наиболее значимые для сельского хозяйства растения относятся к НАДФ-МДГ типу.

После образования четырехуглеродного соединения происходит его перемещение во внутренние клетки обкладочной паренхимы и расщепление или декарбоксилирование этой молекулы. Отделившаяся карбоксильная группа в виде CОО - входит в цикл Кальвина, а оставшаяся трехуглеродная молекула - ФЕП - возвращается опять в клетки мезофилла.

Такой путь фиксации углекислого газа позволяет растениям накапливать в виде органических кислот запас углерода, проводить процесс фотосинтеза в наиболее жаркое время дня при сокращении потерь воды на транспирацию за счет закрытия устьиц. Эффективность использования воды такими растениями в два раза больше, чем у растений, происходящих из умеренных широт.

Для С 4 -растений характерны отсутствие обратного потока углекислого газа при фотодыхании и повышенный уровень синтеза и накопления органических веществ.

Поскольку в цикле Кальвина первичными продуктами включения неорганического углерода в органический являются трехуглеродные соединœения, данный процесс носит название С-3 путь фотосинтеза.

Важно заметить, что для синтеза одной молекулы глюкозы должно произойти шесть оборотов цикла Кальвина. В каждом обороте используются три молекулы АТФ (две для активирования двух молекул фосфоглицериновой кислоты и одна при регенерации рибулезодифосфата) и две молекулы НАДФ. Н 2 для восстановления кислоты в альдегид. Таким образом для синтеза одной молекулы глюкозы крайне важно потратить 12 молекул НАДФ. Н 2 и 18 молекул АТФ.

Важно отметить, что физиологическое значение цикла Кальвина состоит не только в акцепции углекислого газа, но и в создании массы углеводных соединœений, которые идут как на синтез запасных веществ, так и на создание компонентов хлоропласта и текущий метаболизм клетки. .

Большинство растений усваивает неорганический углерод именно по пути цикла Кальвина. При этом довольно большая группа растений (около 500 видов) тропического происхождения выработала в процессе эволюции некоторую модификацию процесса, усваивая неорганический углерод путем образования в результате его акцепции четырехуглеродных соединœений. Это растения, приспособившиеся к фотосинтезу в условиях повышенной температуры воздуха и избыточной освещенности, а также пониженной влажности почвы (засухи). Из культурных растений обладают таким метаболитическим процессом кукуруза, просо, сорго, сахарный тростник. У ряда сорных растений также наблюдается именно эта особенность метаболизма (свинорой, просо куриное, щирица) и т.д.

Особенностью анатомического строения таких растений является наличие фотосинтезирующих клеток двух типов, которые располагаются в виде концентрических кругов - радиально расположенные вокруг проводящих пучков клетки обкладочной паренхимы и мезофилла. Этот тип анатомического строения принято называть кранц-типом (от немецкого Кranz -венок).

Этот тип метаболизма был изучен в 60-е годы прошлого века, большую роль сыграли при этом исследования советских ученых Карпилова, Незговоровой, Тарчевского, а также австралийских ученых Хэтча и Слэка. Именно они предложили законченную схему цикла, в связи с этим принято данный процесс называть также циклом Хэтча-Слэка-Карпилова.

Процесс происходит в два этапа: поступающий в мезофилл СО 2 вступает в соединœение с трехуглеродным соединœением (ФЕП) - фосфоенолпировиноградной кислотой - которая превращается в четырехуглеродное соединœение. Это и есть ключевой момент процесса, из-за которого он и получил свое название, так как неорганический углерод, акцептируясь трехуглеродным соединœением, превращается в четырехуглеродное соединœение. Учитывая зависимость оттого в какое именно четырехуглеродное соединœение превращается неорганический углерод различают три группы растений:

НАДФ-МДГ образуют яблочную кислоту при участии фермента малатдегидрогеназы, а затем пировиноградной кислоты,

НАД-МДГ образуют аспарагиновую кислоту и аланин,

ФЕП-КК образуют аспарагиновую кислоту и фосфоенолпировиноградную кислоту.

Наиболее значимые для сельского хозяйства растения относятся к НАДФ-МДГ типу.

После образования четырехуглеродного соединœения происходит его перемещение во внутренние клетки обкладочной паренхимы и расщепление или декарбоксилирование этой молекулы. Отделившаяся карбоксильная группа в виде CОО - входит в цикл Кальвина, а оставшаяся трехуглеродная молекула - ФЕП - возвращается опять в клетки мезофилла.

Такой путь фиксации углекислого газа позволяет растениям накапливать в виде органических кислот запас углерода, проводить процесс фотосинтеза в наиболее жаркое время дня при сокращении потерь воды на транспирацию за счёт закрытия устьиц. Эффективность использования воды такими растениями в два раза больше, чем у растений, происходящих из умеренных широт.

Для С 4 -растений характерны отсутствие обратного потока углекислого газа при фотодыхании и повышенный уровень синтеза и накопления органических веществ.

С4-растения (С4 plants) - растения, у которых третий этап фотосинтеза протекает с присоединением углекислого газа не к рибулозодифосфату (как у С3-растений), а к трехуглеродному соединению - фосфоенолпировиноградной кислоте, что приводит к образованию четырехуглеродного (С4) соединения - щавелево-уксусной кислоты. К этому типу относятся такие растения, как кукуруза и некоторые другие злаки, преимущественно тропических и субтропических растений (сахарный тростник, сорго)

С3-растения (C3 plants) [англ. c(arbon) - углерод, от лат. carbo - уголь] - растения, у которых третий этап фотосинтеза протекает с участием цикла Кальвина (восстановительный пентозофосфатный цикл, при котором первым продуктом является трехуглеродное (С3) соединение - фосфоглицериновая кислота). К этому типу относится большинство растений.

Физиолого-биохимичсекие различия между С3- и С4-растениями.

У большинства растений первым продуктом фотосинтеза является фосфоглицериновая кислота, содержащая 3 атома водорода. Такие растения называются С3-растениями. Однако уже давно было обнаружено, что у некоторых растений первым продуктом фотосинтеза являются органические кислоты не с тремя, а с четырьмя атомами углерода – щавелевоуксусная и яблочная (малат). Такие растения называются С4-растениями, к ним относятся многие тропические и субтропические растения, в т.ч. некоторые важные культурные виды – сахарный тростник, просо, сорго и кукуруза.

С4-растения имеют характерную особенность в строении листа: у них проводящие пучки окружены 2 кольцами клеток – внешним и внутренним. Внешнее кольцо состоит из обычных клеток мезофилла, а внутреннее – из 222b14hc специализированных клеток, которые называются клетками обкладки проводящего пучка. Клетки обкладки похожи на клетки мезофилла, но отличаются от них строением хлоропластов: в их хлоропластах очень слабо развита система внутренних мембран и содержится очень мало хлорофилла, поэтому хлоропласты клеток обкладки бледно-зеленые. Такое строение листа у С4-растений называется кранц-анатомией («кранц» в переводе означает корона или ореол).

Биохимические различия между С4- и С3-растениями.

Внешние различия между С3- и С4-растениями обусловлены тем, что у них фотосинтез идет по-разному. У С3-растений в одном и том же хлоропласте фиксируется СО 2 , образуется водород и АТФ, а затем в ходе темновой фазы эти вещества используются для синтеза органических веществ. У С4-растений эти процессы разделены в пространстве: АТФ, водород и СО 2 накапливаются в хлоропластах клеток мезофилла, а оттуда транспортируются в хлоропласты клеток проводящего пучка, где из них синтезируются органические вещества. Такой транспорт называется путем Хетча-Слека. У С4-растений между световой и темновой фазами происходит еще 3 стадии фотосинтеза.

13.Методы учета фотосинтеза: качественные и количественные.

Опишем в самых кратких чертах методы определения фотосинтеза. Эти методы могут быть разбиты на две категории:

1.методы, связанные с учетом органических продуктов фотосин­теза;

2.газометрические методы, учитывающие выделение кислорода или поглощение углекислоты.

Как первые, так и вторые могут быть качествен­ного, сравнительного и количественного характера. Из качественных мето­дов мы уже знаем крахмальную пробу. Ее можно произвести не только микроскопически, но и макроскопически. Для этого берут обескрахмаленный лист и выставляют его на свет, закрывши часть листа темной бумагой или станиолью. В тех местах, которые не были закрыты бумагой, образуется крахмал. Последнее легко доказать, обесцвечивая лист спир­том и действуя на него раствором йода в йодистом калии.

Работа по методу половинок возможна только с крупными и симметричными листьями. От листа вдоль по средней жилке срезается по­ловинка. Из нее шаблоном вырезается определенная площадь и высушивает­ся до сухого веса при 105 °C. Вторая половинка листа оставляется на расте­нии на свету в течение нескольких часов. После этого с нею поступают так же, как и с первой. Кроме того, в опыте должен быть и второй лист, у ко­торого оставляется на несколько часов закрытая темной бумагой половин­ка для учета оттока углеводов из листа и его дыхания. Привес взятой поло­винки первого листа с прибавленной к нему убылью второй и даст нам ве­личину фотосинтеза. Ее обычно вычисляют на 1 дм2 площади листа за один час.

Из методов, основанных на изучении другой стороны фотосинтеза, а имен­но учитывающих газообмен, следует отметить качественный метод учета выделившегося кислорода. Водное расте­ние, например элодея, выставляется на свет, и выделяющийся кислород со­бирается в наполненную водой пробирку (рис. 102). Когда кислорода соби­рается достаточное количество, вынимают пробирку и вносят в нее тлеющую лучинку. Лучинка вспыхивает.

Сравнительный метод счета пузырьков также прово­дится с водным растением элодеей. Для этого устанавливают ветку элодеи в пробирке таким образом, чтобы ее конус нарастания был обращен вниз, а срез стебля вверх. Из среза стебля выделяются пузырьки кислорода, число которых и подсчитывается за одну минуту. Используя этот метод, можно выяснить относительную интенсивность процесса фотосинтеза в зависи­мости от температуры и качества света.

Количественные газометрические методы по учету фотосинтеза много­образны. Остановимся лишь на одном, который дает возможность изучать процесс в естественной обстановке (рис. 103). Не отрывая от растения лист, его заключают в стеклянную камеру, сквозь которую просасывается воздух при помощи аспиратора. Воздух с оставшейся после фотосинтеза углекис­лотой проходит через специальную трубку с налитым в нее раствором бари­та (едкий барий), поглощающим оставшуюся углекислоту воздуха. Перед входом в трубку небольшой продырявленной пластинкой воздух разбивает­ся на мелкие пузырьки, которые, проходя через раствор барита, отдают раст­вору находящуюся в них углекислоту. После окончания опыта раствор ба­рита титруют кислотой. Чем больше поглотилось углекислого газа зеленым листом, тем больше кислоты пойдет на титрование, так как при этом будет образовываться меньшее количество углекислого бария. Параллельно ста­вится вторая трубка, через которую пропускается воздух, чтобы определить в нем содержание углекислоты и выяснить количество углекислоты, поглощенной зеленым листом. Метод этот хорош тем, что дает возможность определить фотосинтез в природной обстановке при нормальном содержании углекислоты в воздухе. Недостатком его являются искусственные условия в камере, приводящие нередко к перегреву листа. При перегреве нормаль­ный ход фотосинтеза изменяется, так как интенсивность процесса при этом сильно падает.

В 1965 г. было показано, что у одного из тропических растений - сахарного тростника - первыми продуктами фотосинтеза, по-видимому, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная и аспарагиновая), а не С 3 -кислота (фосфоглицериновая), как у хлореллы и у большинства растений умеренной зоны. С тех пор было выявлено много других растений, главным образом тропических (и в том числе имеющих важное хозяйственное значение), у которых наблюдалась точно такая же картина; они были названы С 4 -растениями . Из однодольных к ним принадлежат, например, кукуруза (Zed), сорго (Sorghum), сахарный тростник (Sacchamm), просо (Eleusine), а из двудольных - Amaranthus и некоторые виды Euphorbia. Растения, у которых первым продуктом фотосинтеза является С 3 -кислота (ФГК), называют С 3 -растениями. Биохимию именно таких растений мы до сих пор и рассматривали в этой главе.

В 1966 г. австралийские исследователи Хэтч и Слэк показали, что С 4 -растения гораздо эффективнее поглощают двуокись углерода, чем С 3 -растения: в экспериментальной камере они снижали концентрацию СО 2 в газовой фазе до 0,1 ч. на млн., а С 3 -растения-только до 50-100 ч. на млн. Это говорит о том, что у С 4 -растений низкая углекислотная точка компенсации . У таких растений практически незаметно фото дыхание.

Этот новый путь превращений углерода у С 4 -растений называют путем Хэтча-Слэка . Хотя этот процесс несколько различен у разных видов, мы рассмотрим, как он идет у типичного С 4 -растения - кукурузы. Для С 4 -растений характерно особое анатомическое строение листа: все проводящие пучки у них окружены двойным слоем клеток. Хлоропласты клеток внутреннего слоя - обкладки проводящего пучка - отличаются по форме от хлоропластов в клетках мезофилла , из которых состоит наружный слой (диморфизм хлоропластов). На рис. 9.29, А и Б показано, как выглядит эта так называемая "кранц-анатомия " (от нем. Kranz - корона, венец, кольцо; при этом имеются в виду два клеточных слоя, на срезе имеющие вид колец). Ниже мы рассмотрим биохимические реакции С 4 -пути (см. рис. 9.30).

Рис. 9.29. А. "Кранц-анатомия", характерная для С 4 -растений. Микрофотография поперечного среза листа росички кроваво-красной (Digitaria sanguinalis), демонстрирующая диморфизм хлоропласте в клетках мезофилла и клетках обкладки проводящих пучков. В клетках мезофилла видны многочисленные граны, а в клетках обкладки проводящих пучков содержатся только отдельные рудиментарные граны. В обоих случаях видны зерна крахмала, × 4000. Б. Электронная микрофотография листа кукурузы. В клетках мезофилла и в клетках обкладки проводящих пучков видны хлоропласты двух типов, × 9900


Рис. 9.30. Упрощенная схема С 4 -пути, сопряженного с фиксацией двуокиси углерода. Показано, как двуокись углерода попадает из воздуха в клетки обкладки проводящих пучков и как происходит ее окончательная фиксация в составе С 3 -кислоты - ФГК

Путь Хэтча-Слэка

Это путь, связанный с транспортировкой СО 2 и водорода из клеток мезофилла в клетки обкладки проводящего пучка. В этих клетках двуокись углерода фиксируется точно так же, как и у С 3 -растений (рис. 9.30), а водород используется для ее восстановления.

Фиксация двуокиси углерода в клетках мезофилла. СО 2 фиксируется в цитоплазме клеток мезофилла в соответствии с уравнением:


Акцептором СО 2 служит фосфоенолпируват (ФЕП), а не рибулозобисфосфат (РиБФ), а вместо РиБФ-карбоксилазы в этой реакции участвует ФЕП-карбоксилаза. У этого фермента есть два громадных преимущества перед РиБФ-карбоксилазой. Во-первых, у него более высокое сродство к СО 2 , и, во-вторых, он не взаимодействует с кислородом и поэтому не участвует в фотодыхании. Образующийся оксалоацетат превращается в малат или аспартат, которые содержат по 4 атома углерода. У этих кислот две карбоксильные (-СООН) группы, т. е. это дикарбоновые кислоты .

Малатный шунт . Через плазмодесмы в клеточных стенках малат переходит в хлоропласты клеток обкладки проводящих пучков. Там он используется для образования СО 2 (путем декарбоксилирования), водорода (за счет окисления) и пиру вата. Выделяющийся при этом водород восстанавливает НАДФ до НАДФ·Н 2 .

Регенерация акцептора СО 2 . Пируват возвращается в клетки мезофилла и используется там для регенерации ФЕП путем присоединения фосфатной группы от АТФ к пирувату. На это расходуется энергия двух высокоэнергетических фосфатных связей.

Итоговая "стоимость" С4-пути

На транспорт СО 2 и водорода из клеток мезофилла в хлоропласты клеток обкладки проводящих пучков расходуются две высокоэнергетические фосфатные связи.

Повторная фиксация двуокиси углерода в клетках обкладки проводящих пучков

В хлоропластах клеток обкладки проводящих пучков образуются СО 2 , НАДФ·Н 2 и пируват (см. выше о малатном шунте). Затем СО 2 повторно фиксируется РиБФ-карбоксилазой в обычном С 3 -пути, где используется также и НАДФ·Н 2 .

Поскольку каждая молекула СО 2 должна связаться дважды, затраты энергии при С 4 -фотосинтезе примерно вдвое больше, чем при С 3 -фотосинтезе. На первый взгляд транспорт СО 2 в С 4 -пути кажется бессмысленным. Однако двуокись углерода настолько эффективно фиксируется ФЕП-карбоксилазой клеток мезофилла, что в клетках обкладки проводящих пучков накапливается очень большое количество СО 2 . А это значит, что РиБФ-карбоксилаза работает в более выгодных условиях, чем у С 3 -растений, где такой же фермент функционирует при обычной атмосферной концентрации СО 2 . Тому есть две причины: во-первых, РиБФ-карбоксилаза, как и любой фермент, более эффективно работает при высокой концентрации субстрата, и, во-вторых, подавляется фотодыхание, так как СО 2 конкурентно вытесняет кислород из активного центра.

Поэтому главное преимущество С 4 -фотосинтеза состоит в том, что значительно возрастает эффективность фиксации СО 2 , а углерод не теряется бесполезно в результате фотодыхания. Этот путь скорее дополняет, а не заменяет обычный С 3 -путь. В результате фотосинтез у С 4 -растений более эффективен, так как в обычных условиях скорость фотосинтеза лимитируется скоростью фиксации СО 2 . С 4 -растения потребляют больше энергии, но энергия, как правило, не бывает лимитирующим фактором фотосинтеза; такие растения обычно растут в странах, где интенсивность освещения очень высока, а хлоропласты у них видоизменены так, чтобы еще лучше использовать доступную им энергию (см. ниже).

Хлоропласты клеток мезофилла и обкладки проводящих пучков

Важнейшие различия между хлоропластами в клетках мезофилла и в клетках обкладки проводящих пучков перечислены в табл. 9.7, отчасти они видны и на рис. 9.29.


Таблица 9.7. Особенности хлоропластов мезофилла и хлоропластов обкладки проводящих пучков у С 4 -растений

9.39. Какие хлоропласты лучше приспособлены для световых, а какие - для темновых реакций?

9.40. Почему отсутствие гран в хлоропластах обкладки проводящих пучков дает определенную выгоду?

9.41. Малатный шунт - это фактически насос для перекачки СО 2 и водорода. Какие преимущества он дает?

9.42. а) Как скажется понижение концентрации кислорода на С 3 -фотосинтезе? б) А как - на С 4 -фотосинтезе? Объясните ваши ответы.

С3-путь фотосинтеза

Восстановительный пентозофосфатный цикл фиксации CO 2 (С 3 -путь, или цикл Кальвина), открытый американскими учеными Э. Бенсоном и М. Калвином в 1950-е годы, универсален и обнаруживается практически у всех автотрофных организмов. В этом цикле (рис.5) фиксация СО 2 осуществляется на пятиуглеродное соединение рибулезобисфосфат (РуБФ) при участии фермента рибулезобисфосфаткарбоксилазы (РуБФ-карбоксилазы). Первым стабильным продуктом являются две молекулы трехуглеродного соединения 3-фосфоглицериновой кислоты (3-ФГК), восстанавливаемая затем с использованием АТФ и НАДФН до трехуглеводных сахаров, из которых образуется конечный продукт фотосинтеза -- шестиуглеродная глюкоза. Субстратом ключевого фермента фотосинтетической фиксации СО 2 -- РуБФ-карбоксилазы -- наряду с СО 2 может быть и О 2 . При взаимодействии РуБФ с кислородом реализуется гликолатный, или С 2 -путь, известный как фотодыхание. Большинство наземных растений осуществляют фотосинтез по С 3 -пути. Типичные представители этой группы -- горох, фасоль, конские бобы, шпинат, салат, капуста, пшеница, овес, рожь, ячмень, свекла, подсолнечник, тыква, томаты и другие одно- и двудольные растения.

С4-путь фотосинтеза

У некоторых видов растений (в основном тропических и очень небольшого числа видов из умеренных широт) первыми стабильными соединениями при фиксации СО 2 являются четырехуглеродные органические кислоты -- яблочная и аспарагиновая. Такие растения отличаются видимым отсутствием фотодыхания (или очень низким уровнем), высокой скоростью фиксации СО 2 в расчете на единицу поверхности листа, более высокой общей фотосинтетической продуктивностью, быстрой скоростью роста. Функционально и анатомически в ткани их листьев выделяют 2 типа фотосинтезирующих клеток -- клетки паренхимной обкладки, окружающие проводящие пучки, и клетки мезофилла.

Для всех растений этой группы характерна катализируемая ферментом фосфоенолпируваткарбоксилазой (ФЕП-карбоксилазой) фиксация СО 2 на трехуглеродное соединение фосфоенолпируват (ФЕП) с образованием щавелевоуксусной кислоты, которая далее превращается в яблочную (малат) или аспарагиновую кислоту. Эти реакции протекают в цитоплазме клеток мезофилла листа. С 4 -кислоты затем поступают в клетки обкладки проводящих пучков, где подвергаются декарбоксилированию, а высвободившаяся СО 2 фиксируется через цикл Кальвина. Следовательно, у С 4 -растений фотосинтетический метаболизм углерода пространственно разделен и осуществляется в клетках различного типа, т. е. по «кооперативному механизму», подробно описанному австралийскими исследователями М. Хетчем и К Слэком и советским биохимиком Ю. С. Карпиловым в конце 1960-1970 годов.

В соответствии с первичным механизмом декарбоксилирования С 4 -кислот все С 4 -растения подразделяются на три группы. НАДФ-малатдегидрогеназные растения осуществляют декарбоксилирование малата с помощью фермента НАДФ-малатдегидрогеназы в хлоропластах клеток обкладки проводящих пучков. Типичные представители этой группы -- кукуруза, сахарный тростник, сорго, росичка кроваво-красная и другие злаки. НАД-малатдегидрогеназные растения осуществляют декарбоксилирование малата с помощью митохондриальной НАД-малатдегидрогеназы. Первичным продуктом фиксации углекислоты у них является аспартат. К типичным представителям этой группы принадлежат различные виды амаранта, портулак огородный, просо обыкновенное, бизонья трава, растущая в прериях Северной Америки и др. Фосфоенолпируват-карбоксикиназные растения осуществляют декарбоксилирование аспартата в цитоплазме клеток обкладки проводящих пучков с образованием ФЕП. Типичные представители -- некоторые виды проса, хлориса, бутелуа.

У суккулентных растений, произрастающих в условиях водного дефицита, фиксация СО 2 осуществляется с помощью так называемого САМ-пути (метаболизм кислот по типу растений семейства толстянковых). Первичный продукт фиксации углекислоты (яблочная кислота) образуется у них в темновой период и накапливается в вакуолях клеток листа. В дневное время при закрытых устьицах (которые закрываются для сохранения воды в тканях листа) осуществляется декарбоксилирование этой кислоты, а освобождающаяся СО 2 поступает в цикл Кальвина.

Возникновение С4- и САМ-путей фотоассимиляции СО 2 связано с давлением на высшие наземные растения засушливого климата. С 4 -растения хорошо адаптированы к высокой интенсивности света, повышенным температурам и засухе. Оптимальная температура для осуществления фотосинтеза у них выше, чем у С 3 -растений. С 4 -растения наиболее многочисленны в зонах с высокими температурами. Они более экономно используют воду по сравнению с С 3 -растениями. В настоящее время известно, что все растения с С 4 -фотосинтезом -- цветковые (из 19 семейств:16 -- двудольных и 3 --однодольных). Не обнаружено ни одного семейства, которое бы состояло только из С 4 -растений.