Динамика – раздел механики, изучающий причины движения тел. В чем причина движения Движение с точки зрения биологии


Часть 2. Динамика изучает законы движения тел и причины, которые вызывают или изменяют это движение. Отвечает на вопрос:Почему движение тела меняется?

Часть 3. Статика изучает условия (законы) равновесия тела или системы тел. Отвечает на вопрос:Что надо, чтобы тело не двигалось?

Часть 4. Законы сохранения задают фундаментальные инварианты во всех изменениях. Отвечают на вопрос:Что сохраняется в системе при данных в ней изменениях?

Объектом рассмотрения бывает одно тело или система тел. Например, есть разница в том, что называется импульсом одного тела и что есть импульс системы тел. Дай соответствующие определения!

Материальная точка – модель тела, обладающего массой, размерами которого в данной задаче можно пренебречь. Изучение движения произвольного тела (имеющего размеры и некоторую форму) сводится к изучению движения системы материальных точек.

Методические указания. Необходимо отметь, что в основном все, что изучается на уровне средней школы, относится лишь к механике материальной точки . Так, координаты задают положение лишь одной точки, и если имеется в виду тело, всегда имеющее некоторые размеры, то задать его положение с помощью одной тройки (в пространстве) координат нельзя! Можно лишь указать положение некоторой его точки, чаще имеется в виду центр масс (точка С) этого тела.

Кроме того, смысл термина «расстояние» (в случае когда речь идет о двух объектах) всегда сводится к расстоянию между двумя точками . Если два тела имеют формы шаров, то за расстояние между ними можно принять расстояние между точками их центров. Например, если рассматривать движение Земли вокруг Солнца, то, пренебрегая линейными размерами этих тел, за расстояние между ними принимают расстояние между точками их центров тяжести (считая Землю и Солнце симметричными по плотности шарами, получим, что центр тяжести каждого из них совпадает по положению в пространстве с его геометрическим центром). Если формы тел произвольны, то, скорее всего, расстоянием между ними будет считается кратчайшее расстояние между какими-то двумя точками их поверхностей.

В связи с этим использование модели материальной точки теоретически избавляет нас от многих неудобств и двусмысленностей. Но важно также следить за тем, насколько сильно отличаются результаты, полученные при использовании этой абстракции, от того, что есть в реальности. Иначе говоря, насколько точно модель соответствует изучаемой реальной ситуации. Необходимость введения абстракций (моделей) часто обусловлена требованием использования точного математического аппарата.

Если тело моделируется материальной точкой, то оно может двигаться одним из следующих простых 1 способов:

    прямолинейно и равномерно,

    прямолинейной с постоянный ускорением (равнопеременно),

    равномерно по окружности,

    по окружности с ускорением,

    колебание – периодическое движение или движение с повторением.

Движение тела, брошенного под углом к горизонту – составной вид движения: =1+2, т.е. равномерно по оси х и равнопеременно по осиу . Сложение этих движений дает движение по данному типу.

Если тело моделируется как АТТ, то и виды движения иные и это отражается в терминологии.

Поступательное движение - движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению. Траектории всех точек совершено одинаковы (полностью совмещаются), одинаковы параметры движения в любой момент времени. А потому для описания поступательного движения АТТ, достаточно описать движение любой одной его точки.

Вращательное движение – движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной прямой, называемойосью вращения. У всех точек одинаковы угловыехарактеристики движения и различны линейные.

Для описания механического движения нужны свои средства. Их совокупность названа системой отсчета.

Учет относительности движения предполагает задание положения материальной точки по отношению к какому-то другому, произвольно выбранному телу, называемому телом отсчета. С ним связывается система координат.Система отсчета – совокупность тела отсчета, системы координат и часов. Начало отсчета времени начинается с момента «включения» часов (часы будем понимать как прибор для отсчета промежутков времени). Понятия «момент времени» и «промежуток времени» различны! Значение промежутка времени не зависит от того, по каким именно часам его засекают (в случае, если все рассматриваемые часы измеряют время в одинаковых единицах). Момент времени, напротив, полностью определяется тем, когда часы «были включены», т.е. положениемначала отсчета времени .

Описывать движение можно на разных языках:


Формула, выражающая зависимость координат тела (или пройденного пути) от времени, называется законом движения.

Замечание . Относительность движения выражается в том, что положение (координата или расстояние от тела отсчета), скорость и время движения рассматриваемого тела могут быть различными в разных системах отсчета. В этой связи и формула закона движения одного и того же объекта имеет различный вид в разных системах отсчета, т.е. форма записи закона движения (одного и того же вида движения) зависит от выбора положения начал отсчета времени и расстояния (а в случае задания координаты еще и от выбора положительного направления координатной оси). Чаще всего, в связи с этим, выбираемое начало отсчета времени совпадает с началом рассматриваемого движения тела, а начало координат помещают в точку начального положения этого тела.

Заметим также, что и вид движения какого-то тела может быть различным при его рассмотрении относительно разных систем отсчета.

Траектория линия , вдоль которой движется тело.

Путь длина траектории (расстояние, пройденное телом вдоль траектории); скалярная неотрицательная величина. Обозначаютl , иногдаS .

П
еремещение
вектор , соединяющий начальное и конечное положения тела. Обозначают.

Скорость векторная физическая величина (характеризующая изменение положения точки),равная первой производной от пути (или координаты) по времени инаправленная по касательной к траектории в сторону движения. Обозначают.Замечание. Скорость всегда направлена по касательной к траектории в соответствующей точке в сторону движения.

Средняя скорость – величина, равная отношению всего пути к затраченному на его прохождение времени (соответствует некоторомупромежутку времени).Мгновенная скорость характеризует скорость в какой-томомент времени.

Ускорение векторная величина, характеризующая изменение скорости (по величинеравно первой производной от скорости по времени или второй производной от пути(или координаты)по времени;направлено как и вызывающая егосила ).

Методические указания. Необходимо подчеркнуть, что в физике надо четко различать два типа величин: вектор и скаляр. Скалярная физическая величина полностью задается своей величиной (иногда с учетом знака «+» или «-»). Векторная физическая величина определяется по меньшей мере двумя характеристиками: числовым значением (числовое значение иногда называют модулем векторной величины, оно в некотором масштабе равно ДЛИНЕ изображающего его отрезка, а потому - всегда положительное число) и направлением (которое можно изобразить на рисунке или задать численно через угол, образованный этим вектором с каким-либо выделенным направлением: горизонт, вертикаль и пр.). Будем говорить, что вектор (векторная физическая величина) известен, если мы можем точно сказать про него: 1) чему он равен, И 2) как направлен. Это особенно важно иметь в виду при анализе изменения любой векторной физической величины!

При решении задач возможны следующие ситуации: 1) речь идет о векторной величине (скорости, силе, ускорении и т.д.), но рассматривается только ее значение (направление в этом случае или очевидно, или не важно, или просто не требует определения и др.). Об этом может, в частности, свидетельствовать вопрос задачи (например, «С какой скоростью v движется …», т.е. дано обозначение лишь модуля скорости. 2) Требуется найти величину как вектор: «Какова скорость v тела?» – где жирным курсивом обозначены векторные величины. 3) Нет прямого указания на тип искомого: «Какова скорость тела?». В этом случае, если позволяют данные задачи, необходимо дать полный ответ (как о векторе), исходя из определения (скорости или др.).

В атмосфере — это перепады давления в слоях атмосферы, которых над землёй несколько. Внизу ощущается наибольшая плотность и насыщенность кислородом. При подъеме газообразного вещества в результате нагрева внизу происходит разрежение, которое стремится заполниться соседними слоями. Так ветры и ураганы возникают из-за дневных и вечерних перепадов температур.

Зачем нужен ветер?

Если бы отсутствовала причина движения воздуха в атмосфере, то жизнедеятельность любого организма прекратилась. Ветер помогает размножаться растениям, животным. Он перемещает облака и является движущей силой в круговороте воды на Земле. Благодаря смене климата происходит очищение местности от грязи, микроорганизмов.

Без пищи человек может выдержать около нескольких недель, без воды не более 3 дней, а без воздуха не более 10 минут. Все живое на Земле зависит от кислорода, перемещающегося вместе с воздушными массами. Непрерывность этого процесса поддерживается солнцем. Смена дня и ночи приводит к колебаниям температуры на поверхности планеты.

В атмосфере всегда происходит движение воздуха, давящего на поверхность Земли с давлением 1,033 г на миллиметр. Эту массу человек практически не ощущает, но при её горизонтальном перемещении мы воспринимает её как ветер. В жарких странах бриз является единственным облегчением от нарастающего пекла в пустыне и степях.

Как образуется ветер?

Основная причина движения воздуха в атмосфере — это смещение слоев под действием температуры. Физический процесс связан со свойствами газов: изменять свой объем, расширяться при нагревании и сужаться под действием холода.

Основная и дополнительная причина движения воздуха в атмосфере:

  • Температурные перепады под влиянием солнца неравномерны. Это связано с формой планеты (в виде сферы). Одни участки Земли прогреваются меньше, другие больше. Создается разность атмосферного давления.
  • Извержение вулканов резко повышает температуру воздуха.
  • Нагрев атмосферы как результат жизнедеятельности человека: выбросы паров от автомобилей и промышленности повышают температуру на планете.
  • Остывшие океаны и моря в ночное время вызывают движение воздуха.
  • Взрыв атомной бомбы приводит к разрежению в атмосфере.

Механизм движения газообразных слоев на планете

Причиной движения воздуха в атмосфере является неравномерность температур. Нагретые от поверхности Земли слои поднимаются вверх, где плотность газообразного вещества повышается. Начинается хаотичный процесс перераспределения масс — ветер. Тепло постепенно отдается соседним молекулам, что приводит их тоже в колебательно-поступательное движение.

Причиной движения воздуха в атмосфере является взаимосвязь температуры и давления в газообразных веществах. Ветер продолжается до тех пор, пока не уравновесится исходное состояние слоев планеты. Но такое условие никогда не будет достигнуто, по причине следующих факторов:

  • Вращательное и поступательное движение Земли вокруг Солнца.
  • Неизбежная неравномерность прогреваемых участков планеты.
  • Деятельность живых существ непосредственно влияет на состояние всей экосистемы.

Чтобы полностью исчез ветер, надо остановить планету, убрать все живое с поверхности и спрятать её в тень от Солнца. Такое состояние может произойти при полной гибели Земли, но прогнозы ученых пока утешительные: это ожидает человечество через миллионы лет.

Сильный морской ветер

Более сильное движение воздуха в атмосфере наблюдается на побережьях. Это связано с неравномерным прогревом почвы и воды. Менее нагреваются реки, моря, озера, океаны. Почва раскаляется моментально, отдавая тепло газообразному веществу над поверхностью.

Нагретый воздух резко устремляется вверх, а полученное разрежение стремится заполниться. А так как над водой плотность воздуха получается более высокой, то образуется в сторону побережья. Такой эффект особенно хорошо ощущается в жарких странах в дневное время. Ночью весь процесс меняется, уже наблюдается движение воздуха в сторону моря — ночной бриз.

Вообще, бризом именуют ветер, меняющий направление за сутки два раза на противоположные направления. Аналогичными свойствами обладают муссоны, только они дуют в жаркое время года со стороны моря, а в холодные сезоны - в сторону суши.

Как определяют ветер?

Основная причина движения воздуха в атмосфере — неравномерное распределение тепла. Правило верно при любых ситуациях в природе. Даже извержение вулкана сначала нагревает газообразные слои, а только потом поднимается ветер.

Проверить все процессы можно путем установки флюгеров, или, проще, флажков, чувствительных к потоку воздуха. Плоская форма свободно вращающегося устройства не дает ему находиться поперек ветра. Оно старается развернуться в направлении движения газообразного вещества.

Часто ветер ощущается телом, по облакам, по дыму печной трубы. Слабые его потоки заметить сложно, для этого требуется намочить палец, он будет мерзнуть с наветренной стороны. Также можно использовать легкий кусок материи или воздушный шарик, заполненный гелием, так флаг поднимается на мачтах.

Мощность ветра

Важна не только причина движения воздуха, но и его сила, определяемая по десятибалльной шкале:

  • 0 баллов — скорость ветра в абсолютный штиль;
  • до 3 — слабый или умеренный поток до 5 м/сек;
  • от 4 до 6 — сильный ветер скорость около 12 м/сек;
  • от 7 до 9 баллов — озвучивается скорость до 22 м/сек;
  • от 8 до 12 баллов и выше — именуется ураганом, сносит даже крыши с домов, рушатся постройки.

или торнадо?

Движение вызывает смешанные потоки воздуха. Встречный поток не способен преодолеть плотный барьер и устремляется вверх, пронизывая облака. Пройдя сгустки газообразных веществ, ветер спадает вниз.

Часто складываются условия, когда происходит закручивание потоков, постепенно усиливающихся подходящими ветрами. Торнадо набирает силу и скорость ветра становится такой, что в атмосферу легко может воспарить железнодорожный состав. Северная Америка является лидером по числу таких явлений в год. Смерчи становятся причиной миллионных убытков для населения, они уносят большое количество жизней.

Другие варианты образования ветра

Сильные ветры способны стереть с поверхности любые образования, даже горы. Единственным видом нетемпературной причины движения воздушных масс является взрывная волна. После срабатывания атомного заряда скорость движения газообразного вещества такова, что сносит многотонные конструкции, как пылинки.

Сильный поток атмосферного воздуха возникает при падении больших метеоритов или разломах земной коры. Аналогичные явления наблюдают во время цунами после подземных толчков. Таяние полярных льдов приводит к подобным состояниям в атмосфере.

Причиной того, что тело начинает двигаться, является действие на это тело других тел. Мяч покатится только, если ударить его. Человек подпрыгнет, если оттолкнётся от пола. Некоторые тела действуют на расстоянии. Так, Земля притягивает всё вокруг, поэтому, если выпустить из рук мяч, то он сразу начнёт двигаться вниз. Скорость движения тела тоже может изменяться только при действии на это тело других тел. Например, мяч резко изменяет скорость движения, наталкиваясь на стену, а птица делает крутой вираж, отталкивая воздух своими крыльями и хвостовым опереньем.

Все вышеперечисленные примеры и множество других, с которыми мы встречаемся на каждом шагу, говорят о том, что тело может изменить свою скорость только тогда, когда на него подействуют другие тела. И наоборот, если на тело не действуют никакие другие тела, то тело будет находиться в покое или двигаться равномерно и прямолинейно. Впервые к такому выводу пришёл Г. Галилей в начале XVII века, а век спустя И. Ньютон назвал это одним из основных законов механики.

Способность тела сохранять свою скорость называют его инерцией. Поэтому закон, открытый Г. Галилеем и сформулированный И. Ньютоном, называют законом инерции или первым законом Ньютона.

Закон инерции справедлив далеко не во всех системах отсчёта. Например, в системе отсчёта, связанной с движущимся автомобилем, его водитель при резком торможении начинает двигаться вперёд, хотя никакие тела на него не действуют. Стоя на диске, который начинает вращаться вокруг своей оси, мы чувствуем, как какая-то неведомая сила заставляет двигаться нас от центра этого диска. Очевидно, что в этих двух системах отсчёта – тормозящий автомобиль и вращающийся диск, закон инерции не выполняется.

Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта. Систему отсчёта, связанную с Землёй, можно считать инерциальной, хотя, как известно, Земля (как диск в одном из предыдущих примеров) вращается вокруг своей оси, но так медленно, что только очень точные измерения показывают несоблюдение закона инерции в этой системе отсчёта.

Если тело отсчёта движется равномерно, прямолинейно и поступательно относительно инерциальной системы отсчёта, то система отсчёта, связанная с этим телом тоже является инерциальной. Докажем это, используя правило преобразования скоростей при переходе от одной системы отсчёта к другой (см. § 2). Пусть скорость тела М (см. рис.7), измеренная в системе отсчёта С 1 равна v 1 , тогда скорость v2 того же тела, но измеренная в системе отсчёта С 2 , движущейся относительно С 1 со скоростью v, равна:

v 2 = v 1 - v (7.1)


Из (7.1) следует, что изменения скоростей Dv 1 и Dv 2 за промежуток времени Dt должны быть одинаковы, так как скорость v остаётся неизменной. Поэтому величины ускорения тела М, измеренные в обеих системах, отсчёта тоже будут одинаковы. В частности, если тело М, на которое не действуют другие тела, движется без ускорения, т.е равномерно, в системе отсчёта С 1 , то его движение относительно системы С2 тоже будет равномерным, а значит систему отсчёта С 2 тоже можно считать инерциальной. Так, например, если считать Землю инерциальной системой отсчёта, то вагон поезда, движущийся равномерно, прямолинейно и поступательно, можно тоже считать инерциальной системой отсчёта.

Вопросы для повторения:

· Что изучает динамика?

· Что является причиной ускорения тела?

· Дайте определение инерции тела и сформулируйте закон инерции.

· Какие системы отсчёта называют инерциальными?

· Приведите примеры инерциальных систем отсчёта и тех, в которых закон инерции не соблюдается.

Рис. 7. Система отсчёта С2 является инерциальной, так как движется относительно инерциальной системы С1 поступательно, равномерно и прямолинейно со скоростью v. Показан способ вычисления скорости v2 тела М относительно системы С2 по известной скорости v1 этого тела в системе С1 .

§ 8. СИЛА – МЕРА ВЗАИМОДЕЙСТВИЯ ТЕЛ: ВИДЫ СИЛ И ИХ ИЗМЕРЕНИЕ

Действительно, еще в древности Аристотель очень наглядно и убедительно объяснил причину движения. Он задал простой вопрос - если по дороге осел тащит арбу, то в чем причина движения арбы? - имеющий простой интуитивных ответ - причина движения арбы - действие осла.

Этот ответ не подвергался сомнению вплоть до Галилея, который увидел ошибку Аристотеля - причины прямолинейного равномерного движения вообще не существует, если тело приведено в движение, то при отсутствии помехи тело будет двигаться бесконечно долго:
...степень скорости, обнаруживаемая телом, ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними; это можно заметить лишь на горизонтальной плоскости, ибо при движении по наклонной плоскости вниз наблюдается ускорение, а при движении вверх— замедление. Отсюда следует, что движение по горизонтали является вечным, ибо если оно является равномерным, то оно ничем не ослабляется, не замедляется и не уничтожается.

Эта интуитивная ошибка присутствует и на уроках физики: если спросить учащихся до изучения данной темы (а иногда и после ее изучения) «В чем причина прямолинейного равномерного движения, например, автомобиля по ровной прямолинейной дороге?», то очень часто можно услышать, что причина движения автомобиля в данном случае в работе двигателя. Этот ответ связан с тем, что действительно, если выключить двигатель, то автомобиль очень быстро остановится.
Именно поэтому необходимо очень подробно объяснять основные законы динамики, пользуясь не только формулировками из учебника,
Вот, например, какие формулировки первого, второго и третьего законов Ньютона можно найти в учебниках:

Автор 1 закон Ньютона 2 закон Ньютона 3 закон Ньютона
О.Ф. Кабардин Существуют такие системы отсчета, относительно которых поступательно движущие тела сохраняют свою скорость постоянной, если на них не действуют другие тела Сила, действующая на тело равна произведению массы тела на сообщаемое этой силой ускорение Тела действуют друг на друга с силами, направленными вдоль одной прямой, равными по модулю и противоположными по направлению

С.В. Громов
10 класс Любое тело, до тех пор, пока оно остается изолированным, сохраняет свое состояние покоя или равномерного прямолинейного движения Если на частицу массой m окружающие тела действуют с силой F, то эта частица приобретает такое ускорение а, что произведение ее массы на ускорение будет равно действующей силе Силы взаимодействия двух частиц всегда равны по модулю и направлены в противоположные стороны вдоль соединяющей их прямой

С.В. Громов
8 класс. Любое тело, до тех пор, пока оно остается изолированным, сохраняет свое состояние покоя или равномерного прямолинейного движения Произведение массы тела на его ускорение равно силе, с которой на него действуют окружающие тела Силы, с которыми взаимодействуют два тела, всегда равны по величине и противоположны по направлению

И.К. Кикоин Существуют такие системы отсчета, относительно которых поступательно движущее тело сохраняет скорость постоянной, если на него не действуют другие тела (или действие других тел скомпенсировано) Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение Тела действуют друг на друга с силами равными по модулю и противоположными по направлению

Но и возвращаться к первоисточникам:
1 закон (в авторской формулировке Ньютона)
Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, если только оно не вынуждено изменять его под влиянием действующих сил.
Ньютон писал в своих «Началах»:
Приложенная сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения.

Сила проявляется, единственно, только в действии и по прекращении его в теле не остается. Тело продолжает затем удерживать свое новое состояние вследствие одной только (силы) инерции. Происхождение приложенной силы может быть различное: от удара, от давления, от центростремительной силы.

Кроме этого, нужно проводить ряд демонстрационных экспериментов , в том числе и мысленный опыт Галилея.
Опыты Галилея. Возьмем наклонную плоскость, поместим на ее вершину шарик. Если шарик будет скатываться с наклонной плоскости и попадать на неровный горизонтальный участок, то он скоро остановится. Если горизонтальный участок будет ровным, шарик прокатится дальше. Значит, если бы со стороны горизонтального участка не было никаких помех движению, то шарик бы двигался бесконечно долго. А это значит, что для того, чтобы тело двигалось, не нужно воздействие другого тела. Значит, причин равномерного прямолинейного движения нет.

Кроме этого Галилей доказывает тот факт, что в двигающемся равномерно и прямолинейно теле нет никаких изменений. Он говорит: никаким опытом нельзя доказать присутствие прямолинейного равномерного движения или его отсутствие. Если нет изменений - равномерное прямолинейное движение, как и покой, - это состояние тела, а не процесс.

Основные выводы:
Причин равномерного прямолинейного движения нет:

  1. Если на тело не действуют другие тела или действие тел скомпенсировано, то тело движется равномерно и прямолинейно
  2. Если тело движется равномерно и прямолинейно, то на него не действуют другие тела или действие тел скомпенсировано.
  3. Если тело находится в состоянии равномерного прямолинейного движения, то система отсчета связанная с ним инерциальна.
  4. Только в инерциальных системах отсчета имеет место применение законов динамики.

Еще одна проблема возникает при изучении понятия "инерция". Данное понятия проще всего рассматривать, ставя его в противопоставление понятию инертность, так лучше запоминается. Инертность и инерция слова похожие, но имеющие разный смысл.
Инертность - свойство тел препятствовать изменению характера своего движения (скорости).
Инерция - это состояние равномерного прямолинейного движения или покоя.

В чем причина движения? Аристотель – движение возможно только под действием силы; при отсутствии сил тело будет покоится. Галилей – тело может сохранять движение и в отсутствии сил. Сила необходима для того чтобы уравновесить другие силы, например, силу трения Ньютон – сформулировал законы движения.

Слайд 4 из презентации «Взаимодействие тел, законы Ньютона» . Размер архива с презентацией 304 КБ.

Физика 10 класс

краткое содержание других презентаций

««Сила трения» 10 класс» - Причины силы трения. Виды трения. Таблица для запоминания формул. Меч – это костяной отросток верхней челюсти рыбы. Сила трения. Трущиеся материелы. Как уменьшают и увеличивают трение. Определение коэффициента трения скольжения. Какую силу необходимо приложить к саням. Как можно увеличить силу трения. Речь пойдет о многократном победителе. Сила, которая возникает при движении одного тела по поверхности.

««Тепловые двигатели» 10 класс» - Охрана окружающей среды. Тепловые двигатели и охрана окружающей среды. Основные компоненты двигателя. История создания. Физика как наука предполагает не только изучение теории. Дизельные двигатели. Ракетные двигатели. Немного о создателе. Дени Папен. Применение. Гамфри Поттер. Пионеры ракетно-космической техники. Двухтактный двигатель. Огненное сердце. Профилактические меры. Как решить проблему. Охрана природы.

«Виды лазеров» - Жидкостный лазер. Полупроводниковый лазер. Источник электромагнитного излучения. Классификация лазеров. Свойства лазерного излучения. Химический лазер. Усилители и генераторы. Газовый лазер. Твердотельные лазеры. Применение лазера. Ультрафиолетовый лазер. Лазер.

«Законы постоянного электрического тока» - Виды соединения проводников. Общее сопротивление цепи. Последовательное и параллельное соединения. Знания основных законов постоянного тока. Действия электрического тока. Закон Ома для участка цепи. «Минусы» соединений. Преобразование цепей. Схемы соединений. Ошибки. Электрический ток. Сопротивления. Сила тока. Вольтметр. «Плюсы» соединений. Основные формулы темы. Общее сопротивление. Законы постоянного тока.

«Насыщенный и ненасыщенный пар» - Конденсационный гигрометр. Зависимость давления насыщенного пара от температуры. Абсолютная влажность воздуха. Приступаем к решению задач. Относительная влажность воздуха. Интересные явления. Изотермы реального газа. Испарение жидкости. Зона комфорта для человека. Роса. Определение влажности воздуха. Иней. Волосной гигрометр. Научимся пользоваться таблицей. Кипение. Процессы, происходящие в закрытом сосуде.

«Определение поверхностного натяжения» - Коэффициент поверхностного натяжения. Результаты исследования. Отношение к материалу урока. Виртуальная лабораторная работа. Длина проволоки. Сферическая поверхность. Поверхностное натяжение. Проблемный опыт. Как соединяются мыльные пузыри. Коррекция знаний. Процесс образования мыльных пузырей. Выдуть мыльные пузыри. Мыльные пузыри различного размера. Какие силы действуют вдоль поверхности жидкости.