Степени окисления щелочноземельных металлов переменные. Щелочные и щелочноземельные металлы. Все металлы растворяются в кислотах


IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.

Наиболее активными среди металлической группы являются щелочные и щелочноземельные металлы. Это мягкие лёгкие металлы, вступающие в реакции с простыми и сложными веществами.

Общее описание

Активные металлы занимают первую и вторую группы периодической таблицы Менделеева. Полный список щелочных и щелочноземельных металлов:

  • литий (Li);
  • натрий (Na);
  • калий (K);
  • рубидий (Rb);
  • цезий (Cs);
  • франций (Fr);
  • бериллий (Be);
  • магний (Mg);
  • кальций (Ca);
  • стронций (Sr);
  • барий (Ba);
  • радий (Ra).

Рис. 1. Щелочные и щелочноземельные металлы в таблице Менделеева.

Электронная конфигурация щелочных металлов - ns 1 , щелочноземельных металлов - ns 2 .

Соответственно, постоянная валентность щелочных металлов - I, щелочноземельных - II. За счёт небольшого количества валентных электронов на внешнем энергетическом уровне активные металлы проявляют мощные свойства восстановителя, отдавая внешние электроны в реакциях. Чем больше энергетических уровней, тем меньше связь с внешних электронов с ядром атома. Поэтому металлические свойства возрастают в группах сверху вниз.

Из-за активности металлы I и II групп находятся в природе только в составе горных пород. Чистые металлы выделяют с помощью электролиза, прокаливания, реакции замещения.

Физические свойства

Щелочные металлы имеют серебристо-белый цвет с металлическим блеском. Цезий - серебристо-жёлтый металл. Это наиболее активные и мягкие металлы. Натрий, калий, рубидий, цезий режутся ножом. По мягкости напоминают воск.

Рис. 2. Разрезание натрия ножом.

Щелочноземельные металлы имеют серый цвет. По сравнению со щелочными металлами являются более твёрдыми, плотными веществами. Ножом можно разрезать только стронций. Самый плотный металл - радий (5,5 г/см 3).

Наиболее лёгкими металлами являются литий, натрий и калий. Они плавают на поверхности воды.

Химические свойства

Щелочные и щелочноземельные металлы реагируют с простыми веществами и сложными соединениями, образуя соли, оксиды, щёлочи. Основные свойства активных металлов описаны в таблице.

Взаимодействие

Щелочные металлы

Щелочноземельные металлы

С кислородом

Самовоспламеняются на воздухе. Образуют надпероксиды (RO 2), кроме лития и натрия. Литий образует оксид при нагревании выше 200°C. Натрий образует смесь пероксида и оксида.

4Li + O 2 → 2Li 2 O;

2Na + О 2 → Na 2 O 2 ;

Rb + O 2 → RbO 2

На воздухе быстро образуются защитные оксидные плёнки. При нагревании до 500°С самовоспламеняются.

2Mg + O 2 → 2MgO;

2Ca + O 2 → 2CaO

С неметаллами

Реагируют при нагревании с серой, водородом, фосфором:

2K + S → K 2 S;

2Na + H 2 → 2NaH;

2Cs + 5P → Cs 2 P 5 .

С азотом реагирует только литий, с углеродом - литий и натрий:

6Li + N 2 → 2Li 3 N;

2Na + 2C → Li 2 C 2

Реагируют при нагревании:

Ca + Br 2 → CaBr 2 ;

Be + Cl 2 → BeCl 2 ;

Mg + S → MgS;

3Ca + 2P → Ca 3 P 2 ;

Sr + H 2 → SrH 2

С галогенами

Бурно реагируют с образованием галогенидов:

2Na + Cl 2 → 2NaCl

Образуются щёлочи. Чем ниже металл расположен в группе, тем более активно протекает реакция. Литий взаимодействует спокойно, натрий горит жёлтым пламенем, калий - со вспышкой, цезий и рубидий взрываются.

2Na + 2H 2 O → 2NaOH + H 2 -;

2Li + 2H 2 O → 2LiOH + H 2

Менее активно, чем щелочные металлы, реагируют при комнатной температуре:

Mg + 2H 2 O → Mg(OH) 2 + H 2 ;

Ca + 2H 2 O → Ca(OH) 2 + H 2

С кислотами

Со слабыми и разбавленными кислотами реагируют с взрывом. С органическими кислотами образуют соли.

8K + 10HNO 3 (конц) → 8KNO 3 + N 2 O + 5H 2 O;

8Na + 5H 2 SO 4 (конц) → 4Na 2 SO 4 + H 2 S + 4H 2 O;

10Na + 12HNO 3 (разб) → N 2 + 10NaNO 3 + 6H 2 O;

2Na + 2CH 3 COOH → 2CH 3 COONa + H 2

Образуют соли:

4Sr + 5HNO 3 (конц) → 4Sr(NO 3) 2 + N 2 O +4H 2 O;

4Ca + 10H 2 SO 4 (конц) → 4CaSO 4 + H 2 S + 5H 2 O

Со щелочами

Из всех металлов реагирует только бериллий:

Be + 2NaOH + 2H 2 O → Na 2 + H 2

С оксидами

Вступают в реакцию все металлы, кроме бериллия. Замещают менее активные металлы:

2Mg + ZrO 2 → Zr + 2MgO

Рис. 3. Реакция калия с водой.

Щелочные и щелочноземельные металлы можно обнаружить с помощью качественной реакции. При горении металлы окрашиваются в определённый цвет. Например, натрий горит жёлтым пламенем, калий - фиолетовым, барий - светло-зелёным, кальций - тёмно-оранжевым.

Что мы узнали?

Щелочные и щелочноземельные - наиболее активные металлы. Это мягкие простые вещества серого или серебристого цвета с небольшой плотностью. Литий, натрий, калий плавают на поверхности воды. Щелочноземельные металлы более твёрдые и плотные, чем щелочные. На воздухе быстро окисляются. Щелочные металлы образуют надпероксиды и пероксиды, оксид образует только литий. Бурно реагируют с водой при комнатной температуре. С неметаллами реагируют при нагревании. Щелочноземельные металлы вступают в реакцию с оксидами, вытесняя менее активные металлы. Со щелочами реагирует только бериллий.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 294.

Щелочноземельные металлы образуют основные оксиды, которые получают термическим разложением карбонатов или нитратов:

СаCO 3 = СаO + CO 2 ; 2Ba(NO 3) 2 = 2BaO + 4NO 2 + O 2

Энергично взаимодействуют с водой с образованием растворимых сильных оснований (щелочей).

При переходе от Ca(OH) 2 к Ba(OH) 2 растворимость заметно увеличивается (от 0,02 М до 0,2 М), в том же направлении увеличивается термическая устойчивость гидроксидов и усиливаются основные свойства. По силе основания уступают только гидроксидам щелочных металлов. Раствор Ва(ОН) 2 – баритовая вода – лабораторный реактив на CO 2 .

Катионы щелочноземельных металлов образуют соли со всеми кислотами. Хорошо растворимы галогениды, нитраты, перхлораты и большинство кислых солей. Плохо растворимы в воде фториды, карбонаты, силикаты и фосфаты. Образование мелкокристаллического осадка сульфата бария является качественной реакцией на сульфат-анион:

Ba 2+ + SO 4 2- = BaSO 4 

Присутствие в природной воде растворимых солей кальция и магния обуславливает ее жесткость. Количественно жесткость измеряют суммарной концентрацией катионов Ca 2+ и Mg 2+ (ммоль экв/л). Различают временную (карбонатную) и постоянную жесткость. Первая удаляется кипячением:

Ca(HCO 3) 2 = CaCO 3 + CO 2 + H 2 O; Mg(HCO 3) 2 = Mg(OH) 2 + 2CO 2

Для удаления постоянной жесткости к воде добавляют вещества (соду, фосфат натрия и т.п.), переводящие катионы кальция и магния в осадок. Кроме того применяют метод ионного обмена, в этом случае катионы Ca 2+ и Mg 2+ меняются на катионы водорода или щелочного металла, удерживаемые на поверхности полимерной смолы (катионита).

Гидриды представляют собой белые солеподобные вещества, разлагающиеся водой с выделением водорода, сильные восстановители. В отличие от бериллия и магния, гидриды щелочноземельных металлов можно получить прямым синтезом:

Ca + H 2 = CaH 2

Литература: с. 587 - 599, с. 481 - 486, с. 447 - 460

7.4. Элементы ia-подгруппы (щелочные металлы)

Элементы IA-подгруппы: литий - Li, натрий - Na, калий - K, рубидий - Rb, цезий - Cs и радиоактивный франций часто называют щелочными металлами. Общая формула ns 1 обуславливает проявление щелочными металлами степени окисления +1.

Увеличение эффективного радиуса и уменьшение энергии ионизации в ряду Li – Na – K – Rb – Cs сопровождается заметным увеличением активности металлов. Небольшой радиус атома лития вызывает довольно сильные отличия данного элемента от остальных щелочных металлов, что в первую очередь проявляется в склонности к образованию ковалентных связей. Для натрия и особенно элементов подгруппы калия образование ковалентных связей нетипично. Малый размер и большая энергия гидратации катиона лития приводит к нарушению ожидаемой последовательности расположения щелочных металлов в ряду стандартных электродных потенциалов (литий стоит в нем первым). Нарушается ожидаемая последовательность активности щелочных металлов и в расплавах, в которых натрий более активен, что связано с образованием его ионом более прочных кристаллических решеток:

KOH + Na = NaOH + K

Литий, натрий, калий и рубидий - серебристо-белые металлы, цезий золотисто-желтого цвета. На воздухе поверхность лития, натрия и калия очень быстро тускнеет, рубидий и цезий самопроизвольно воспламеняются. Литий, натрий и калий хранят под слоем вазелина или вазелинового масла, рубидий и цезий хранят в запаянных ампулах. Металлы очень легкие и легкоплавкие, имеют довольно большой диапазон жидкого состояния. Щелочные металлы очень мягкие, натрий и калий легко режутся ножом.

Литий, натрий и калий весьма распространены в природе, образуют много самостоятельных минералов: LiAl(SiO 3) 2 - сподумен, LiAl(PO 4)F - амблигонит, NaCl галит (каменная или поваренная соль), Na 2 SO 4 10H 2 O - мирабилит, KCl - сильвин, NaClKCl - сильвинит, KClMgCl 2 6H 2 O - карналлит, КClMgSO 4 3H 2 O - каинит. Рубидий и цезий самостоятельных минералов не образуют, встречаются в виде примесей в минералах калия.

Литий и натрий получают электролизом ионных расплавов. Калий обычно получают восстановлением расплавов его соединений натрием или магнием.

Литий применяется в качестве легирующей добавки, придает сплавам твердость и пластичность. Натрий используется как теплоноситель в ядерных реакторах и восстановитель в металлотермии, а также как катализатор процессов полимеризации диенов. В лабораториях натрий широко используется для осушки газов и органических растворителей. Калий используется в промышленности как восстановитель и теплоноситель (в основном в виде жидкого сплава с натрием). Рубидий и цезий в основном применяются для изготовления фотоэлементов.

Химические свойства. Очень активные металлы, реагируют со всеми неметаллами, кроме инертных газов. Состав продуктов окисления кислородом зависит от природы металла: литий образует оксид, натрий и калий - перекисные соединения.

4Li + O 2 = 2Li 2 O; 2Na + O 2 = Na 2 O 2 ; K + O 2 = KO 2

пероксид натрия супероксид калия

С водой реагируют очень энергично, калий - со взрывом:

2K + 2H 2 O = 2KOH + H 2

Растворимы в аммиаке, с которым реагируют в присутствии катализатора:

2Na + 2NH 3 = 2NaNH 2 + H 2

Растворимы в ртути, образуя амальгамы, которые медленно разлагаются водой и используются в качестве мягкого восстановителя. Активно реагируют с оксидами, отбирая у них кислород, горят в атмосфере оксида углерода(IV):

4Na + SiO 2 = 2Na 2 O + Si; 4Li + CO 2 = 2Li 2 O + C

Вторая группа периодической системы Д. И. Менделеева содержит группу элементов, очень похожих по своим свойствам на щелочные металлы, однако уступающих им по активности. В нее входят бериллий и магний, а также кальций, стронций, барий и радий. Они известны под общим названием - щелочноземельные элементы. В нашей статье мы ознакомимся с их распространением в природе и применением в промышленности, а также изучим важнейшие химические свойства щелочноземельных металлов.

Общая характеристика

Все атомы выше перечисленных элементов содержат на внешнем энергетическом слое по два электрона. Взаимодействуя с другими веществами, они всегда отдают свои отрицательные частицы, переходя в состояние катионов с зарядом 2+. В окислительно-восстановительных реакциях элементы ведут себя как сильные восстановители. По мере увеличения заряда ядра, химические свойства щелочноземельных металлов и их активность усиливаются. На воздухе они быстро окисляются, образуя на своей поверхности оксидную пленку. Общая формула всех оксидов - RO. Им соответствуют гидроксиды с формулой R(OH) 2 . Их основные свойства и растворимость в воде также возрастают с увеличением порядкового номера элемента.

Особые свойства бериллия и магния

По некоторым своим свойствам первые два представителя главной подгруппы второй группы несколько отличаются от других щелочноземельных элементов. Это проявляются, в частности, во время их взаимодействия с водой. Например, химические свойства бериллия таковы, что он вообще не вступает в реакцию с H 2 O. Магний же взаимодействует с водой лишь при нагревании. Зато все щелочноземельные элементы легко реагируют с нею при обычной температуре. Какие же вещества при этом образуются?

Основания щелочноземельных металлов

Являясь активными элементами, кальций, барий и другие представители группы быстро вытесняют водород из воды, в результате получаются их гидроксиды. Взаимодействие щелочноземельных металлов с водой протекает бурно, с выделением тепла. Растворы оснований кальция, бария, стронция мылкие на ощупь, при попадании на кожу и слизистую оболочку глаз вызывают сильные ожоги. Первой помощью в таких случаях будет обработка раневой поверхности слабым раствором уксусной кислоты. Он нейтрализует щелочь и уменьшит риск возникновения некроза поврежденных тканей.

Химические свойства щелочноземельных металлов

Взаимодействие с кислородом, водой и неметаллами - это главный перечень свойств металлов, входящих во вторую группу периодической системы химических элементов. Например, кальций даже в обычных условиях вступает в реакции с галогенами: фтором, хлором, бромом и йодом. При нагревании он соединяется с серой, углеродом и азотом. Жесткое окисление - горение, заканчивается образованием оксида кальция: 2Ca + O 2 = 2 CaO. Взаимодействие металлов с водородом приводит к появлению гидридов. Они представляют собой тугоплавкие вещества белого цвета, имеющие ионные кристаллические решетки. К важным химическим свойствам щелочноземельных металлов относится их взаимодействие с водой. Как уже говорилось ранее, продуктом этой реакции замещения будет гидроксид металла. Отметим также, что в главной подгруппе второй группы наиболее значимое место занимает кальций. Поэтому остановимся на его характеристике подробнее.

Кальций и его соединения

Содержание элемента в земной коре составляет до 3,5%, что указывает на его широкое распространение в составе таких минералов, как известняк, мел, мрамор и кальцит. В состав природного кальция входит шесть видов изотопов. Он также содержится в источниках природной воды. Соединения щелочных металлов подробно изучаются в курсе неорганической химии. Например, на уроках в 9 классе учащиеся узнают, что кальций - это легкий, но прочный металл серебристо-белого цвета. Температура его плавления и кипения выше, чем у щелочных элементов. Основной способ получения - электролиз смеси расплавленных солей хлорида и фторида кальция. К основным химическим свойствам относятся его реакции с кислородом, водой и неметаллами. Из соединений щелочных металлов наибольшее значение для промышленности имеют оксид и основание кальция. Первое соединение получают из мела или известняка методом их выжигания.

Далее из окиси кальция и воды образуется гидроксид кальция. Смесь его с песком и водой называют строительным известковым раствором. Он продолжает применяться в качестве штукатурки и для соединения кирпичей при кладке стен. Раствор гидроксида кальция, называемый известковой водой, используют в качестве реактива для обнаружения углекислого газа. При пропускании двуокиси углерода через прозрачный водный раствор Ca(OH) 2 , наблюдается его помутнение вследствие образования нерастворимого осадка карбоната кальция.

Магний и его характеристика

Химия щелочноземельных металлов изучает свойства магния, акцентируя внимание на некоторых его особенностях. Он представляет собой очень легкий, серебристо-белый металл. Магний, расплавленный в атмосфере с высокой влажностью, активно поглощает из водяного пара молекулы водорода. Остывая, металл практически полностью выделяет их обратно в воздух. Он очень медленно реагирует с водой по причине образования малорастворимого соединения - гидроксида магния. Щелочи на магний не действуют вовсе. Не реагирует металл с некоторыми кислотами: концентрированной сульфатной и плавиковой, вследствие его пассивации и образования на поверхности защитной пленки. Большинство же минеральных кислот растворяют металл, что сопровождается бурным выделением водорода. Магний - сильный восстановитель, он замещает многие металлы из их оксидов или солей:

BeO + Mg = MgO + Be.

Металл вместе с бериллием, марганцем, алюминием применяют в качестве легирующей добавки к стали. Особенно ценными свойствами обладают магнийсодержащие сплавы - электроны. Их используют в самолетостроении и производстве автомобилей, а также в деталях оптической техники.

Роль элементов в жизнедеятельности организмов

Приведем примеры щелочноземельных металлов, соединения которых распространены в живой природе. Магний является центральным атомом в молекулах хлорофилла у растений. Он участвует в процессе фотосинтеза и входит в состав активных центров зеленого пигмента. Атомы магния фиксируют световую энергию, преобразуя ее затем в энергию химических связей органических соединений: глюкозы, аминокислот, глицерина и жирных кислот. Важную роль выполняет элемент в качестве необходимого компонента ферментов, регулирующих обмен веществ в организме человека. Кальций - макроэлемент, обеспечивающий эффективное прохождение электрических импульсов по нервной ткани. Присутствие его фосфорнокислых солей в составе костей и зубной эмали придает им твердость и прочность.

Бериллий и его свойства

К щелочноземельным металлам относятся также бериллий, барий и стронций. Рассмотрим бериллий. Элемент мало распространен в природе, в основном, встречается в составе минералов, например, берилла. Его разновидности, содержащие разноцветные примеси, образуют драгоценные камни: изумруды и аквамарины. Особенностью физических свойств является хрупкость и высокая твердость. Отличительной чертой атома элемента является наличие на втором снаружи энергетическом уровне не восьми, как у всех остальных щелочноземельных металлов, а только двух электронов.

Поэтому радиус атома и иона непропорционально мал, энергия ионизации большая. Это обуславливает высокую прочность кристаллической решетки металла. Химические свойства бериллия также отличают его от других элементов второй группы. Он реагирует не только с кислотами, но и с растворами щелочей, вытесняя водород и, образуя гидроксобериллаты:

Be + 2NaOH + 2H 2 O = Na 2 + H 2 .

Металл имеет ряд уникальных характеристик. Благодаря способности пропускать рентгеновские лучи, его применяют для изготовления окошек рентгеновских трубок. В ядерной промышленности элемент считается наилучшим замедлителем и отражателем нейтронов. В металлургии он применяется как ценная легирующая добавка, повышающая антикоррозионные свойства сплавов.

Стронций и барий

Элементы достаточно распространены в природе и, так же, как щелочноземельный металл магний, входят в состав минералов. Назовем их: это барит, целестин, стронцианит. Барий имеет вид пластичного металла серебристо-белого цвета. Как и кальций, представлен несколькими изотопами. На воздухе активно взаимодействует с его компонентам - кислородом и азотом, образуя оксид и нитрид бария. По этой причине металл хранят под слоем парафина или минерального масла, избегая его контакта с воздухом. Оба металла при нагревании до 500°C образуют пероксиды.

Из них практическое применение имеет перекись бария, используемая в качестве отбеливателя тканей. Химические свойства щелочноземельных металлов - бария и стронция, похожи на свойства кальция. Однако их взаимодействие с водой протекает значительно активнее, а образовавшиеся основания являются более сильными, чем гидроксид кальция. Барий применяют в качестве добавки к жидкометаллическим теплоносителям, уменьшающей коррозию, в оптике, при изготовлении вакуумных электронных приборов. Стронций востребован в производстве фотоэлементов и люминофоров.

Качественные реакции с использованием ионов щелочноземельных металлов

Соединения бария и стронция - это примеры щелочноземельных металлов, широко используемых в пиротехнике по причине яркого окрашивания пламени их ионами. Так, сульфат или карбонат стронция дает карминово-красное свечение пламени, а соответствующие соединения бария - желто-зеленое. Для обнаружения ионов кальция в лаборатории на пламя горелки насыпают несколько крупинок хлорида кальция, пламя окрашивается в кирпично-красный цвет.

Раствор хлорида бария применяют в аналитической химии для выявления в растворе ионов кислотного остатка сульфатной кислоты. Если при сливании растворов образуется белый осадок сульфата бария - значит, в нем находились частицы SO 4 2- .

В нашей статье мы изучили свойства щелочноземельных металлов и привели примеры их применения в различных отраслях промышленности.

Часть первая. Общая характеристика II А группы Периодической Системы элементов.

В этой группе располагаются следующие элементы: Be, Mg, Ca, Sr, Ba, Ra. Они имеют общую электронную конфигурацию: (n-1)p 6 ns 2 , кроме Ве 1s 2 2s 2 . В силу последнего, свойства Ве немного отличаются от свойств подгруппы в целом. Свойства магния тоже отличаются от свойств подгруппы, но в меньшей степени. В ряду Са – Sr – Ba – Ra свойства меняются последовательно. Относительная электроотрицательность в ряду Ве – Ra падает т.к. с увеличением размера атома валентные электроны отдаются охотнее. Свойства элементов IIА подгруппы определяются легкостью отдачи двух ns-электронов. При этом образуются ионы Э 2+ . При изучении дифракции рентгеновских лучей выяснилось, что в некоторых соединениях элементы IIА подгруппы проявляют одновалентность. Примером таких соединения являются ЭГ, которые получаются при добавлении Э к расплаву ЭГ 2 . Все элементы этого ряда не встречаются в природе в свободном состоянии ввиду высокой активности.

Часть вторая. Бериллий и магний.

История бериллия

Соединения бериллия в виде драгоценных камней были известны еще в древности. С давних пор люди искали и разрабатывали месторождения голубых аквамаринов, зеленых изумрудов, зеленовато-желтых бериллов и золотистых хризобериллов. Но только в конце 18 века химики заподозрили, что в бериллах есть какой-то новый неизвестный элемент. В 1798 году французский химик Льюис Николас Воклен выделил из берилла окись "La terree du beril", отличавшуюся от окиси алюминия. Эта окись придавала солям сладкий вкус, не образовывала квасцов, растворялась в растворе карбоната аммония и не осаждалась оксалатом калия. Металлический бериллий был впервые получен в 1829 году известным немецким ученым Веллером и одновременно французским ученым Бюсси, который получил порошок металлического бериллия восстановлением хлористого бериллия металлическим калием. Начало промышленного производства относится к 30-40 гг. прошлого столетия.

История магния

Свое название элемент получил по местности Магнезия в Древней Греции.Природные магнийсодержащие материалы магнезит и доломит издавна использовались в строительстве.

Первые попытки выделить металлическую основу магнезии в чистом виде были предприняты в начале XIX в. знаменитым английским физиком и химиком Гемфри Дэви (1778–1829) после того, как он подверг электролизу расплавы едкого кали и едкого натра и получил металлический Na и K. Он решил попытаться аналогичным образом осуществить разложение оксидов щелочноземельных металлов и магнезии. В своих первоначальных опытах Дэви пропускал ток через влажные оксиды, предохраняя их от соприкосновения с воздухом слоем нефти; однако при этом металлы сплавлялись с катодом и их не удавалось отделить.

Дэви пробовал применять множество различных методов, но все они по разным причинам оказывались малоуспешными. Наконец, в 1808 г. его постигла удача – он смешал влажную магнезию с оксидом ртути, поместил массу на пластинку из платины и пропустил через нее ток; амальгаму перенес в стеклянную трубку, нагрел, чтобы удалить ртуть, и получил новый металл. Тем же способом Дэви удалось получить барий, кальций и стронций. Промышленное производство магния электролитическим способом было начато в Германии в конце 19 века. Теоретические и экспериментальные работы по получению магния электролитическим способом в нашей стране были выполнены П.П. Федотьевым; процесс восстановления оксида магния кремнием в вакууме исследовал П.Ф. Антипин.

Распространение

Бериллий относится к числу не очень распространенных элементов: его содержание в земной коре составляет 0,0004 вес. %. Бериллий в природе находится в связанном состоянии. Важнейшие минералы бериллия: берилл- Be 3 Al 2 (SiO 3) 6 , хризоберилл- Be(AlO 2) 2 и фенакит- Be 2 SiO 4 . Основная часть бериллия распылена в качестве примесей к минералам ряда других элементов, особенно алюминия. Бериллий содержится также в глубинных осадках морей и золе некоторых каменных углей. Некоторые разновидности берилла, окрашенные примесями в различные цвета, относятся к драгоценным камням. Таковы, например, зеленые изумруды, голубовато-зеленые аквамарины.

Магний – один из самых распространенных в земной коре элементов. Содержание магния составляет 1,4 %. К числу важнейших минералов относятся, в частности, углекислые карбонатные породы, образующие огромные массивы на суше и даже целые горные хребты – магнезит MgCO 3 и доломит MgCO 3 -CaCO 3 . Под слоями различных наносных пород совместно с залежами каменной соли известны колоссальные залежи и другого легкорастворимого магнийсодержащего минерала – карналлита MgCl 2 -KCl-6H 2 O. Кроме того, во многих минералах магний тесно связан с кремнеземом, образуя, например, оливин [(Mg, Fe) 2 SiO 4 ] и реже встречающийся форстерит (Mg 2 SiO 4). Другие магнийсодержащие минералы – это бруцит Mg(OH) 2 , кизерит MgSO 4 , эпсонит MgSO 4 -7H 2 O, каинит MgSO 4 -KCl-3H 2 O. На поверхности Земли магний легко образует водные силикаты (тальк, асбест и др.), примером которых может служить серпентин 3MgO-2SiO 2 -2H 2 O. Из известных минералов около 13 % содержат магний. Однако природные соединения магния широко встречаются и в растворенном виде. Кроме различных минералов и горных пород, 0,13 % магния в виде MgCl 2 постоянно содержатся в водах океана (его запасы здесь неисчерпаемы – около 6-10 16 т) и в соленых озерах и источниках. Магний также входит в состав хлорофилла в количестве до 2 % и выступает здесь как комплексообразователь. Общее содержание этого элемента в живом веществе Земли оценивается величиной порядка 10 11 тонн.

Получение

Основной (около 70%) способ получения магния – электролиз расплавленного карналлита или MgCl 2 под слоем флюса для защиты от окисления. Термический способ получения магния (около 30%) заключается в восстановлении обожженного магнезита или доломита. Бериллиевые концентраты перерабатывают в оксид или гидроксид бериллия, из которых получают фторид или хлорид. При получении металлического бериллия осуществляют электролиз расплава BeCl 2 (50 вес.%) и NaCl.Такая смесь имеет температуру плавления 300 о С против 400 о С для чистого ВеCl 2 . Также бериллий получают магний- или алюмотермически при 1000-1200 0 C из Na 2 : Na 2 + 2Mg = Be + 2Na + МgF 2 . Особо чистый бериллий (в основном для атомной промышленности) получают зонной плавкой, дистилляцией в вакууме и электролитическим рафинированием.

Особенности

Бериллий является “чистым” элементом. В природе магний встречается в виде трех стабильных изотопов: 24 Mg (78,60%), 25 Mg (10,11%) и 26 Mg (11,29%). Искусственно были получены изотопы с массами 23, 27 и 28.

Бериллий имеет атомный номер 4 и атомный вес 9,0122. Он находится во втором периоде периодической системы и возглавляет главную подгруппу 2 группы. Электронная структура атома бериллия - 1s 2 2s 2 . При химическом взаимодействии атом бериллия возбуждается (что требует затраты 63 ккал/г×атом) и один из 2s-электронов переходит на 2р-орбиталь что определяет специфику химии бериллия: он может проявлять максимальную ковалентность, равную 4, образуя 2 связи по обменному механизму, и 2 по донорно-акцепторному. На кривой потенциалов ионизации бериллий занимает одно из верхних мест. Последнее соответствует его малому радиусу и характеризует бериллий как элемент не особенно охотно отдающий свои электроны, что в первую очередь определяет малую степень химической активности элемента. С точки зрения электроотрицательности бериллий может рассматриваться как типичный переходный элемент между электроположительными атомами металлов, легко отдающих свои электроны, и типичными комплексо-образователями, имеющими тенденцию к образованию ковалентной связи. Бериллий проявляет диагональную аналогию с алюминием в большей мере, чем LicMg и является кайносимметричным элементом. Бериллий и его соединения весьма токсичны. ПДК в воздухе - 2 мкг/м 3 .

В периодической системе элементов магний располагается в главной подгруппе II группы; порядковый номер магния – 12, атомный вес 24,312. Электронная конфигурация невозбужденного атома – 1s 2 2s 2 2p 6 3s 2 ; строение внешних электронных оболочек атома Mg (3s 2) соответствует его нульвалентному состоянию. Возбуждение до двухвалентного 3s 1 3p 1 требует затраты 62 ккал/г-атом. Ионизационные потенциалы магния меньше, чем бериллия, поэтому соединения магния характеризуются большей долей ионности связи. По комплексообразовательной способности магний тоже уступает бериллию. Взаимодействие с элементами IIIВ группы с недостроенными d-оболочками имеет некоторые особенности. В эту группу входят Sc, Y, Ln, и Th. Эти элементы образуют с магнием ряд промежуточных фаз и хорошо растворяются в нем в жидком состоянии. Диаграммы состояния смесей этих элементов с магнием – эвтектического характера. Растворимость этих элементов в магнии в твердом состоянии не велика (2 – 5 % по массе). Со щелочноземельными и особенно со щелочными металлами магний не образует значительной области растворимости в твердом состоянии, что связано с большим различием атомных радиусов. Исключением является литий, атомный радиус которого отличается от атомного радиуса магния на 2 %. Системы магния с медью, серебром и золотом – эвтектического типа. Растворимость серебра при температуре эвтектики –16 % по массе.

Физические свойства

Бериллий – металл серебристо-белого цвета. Довольно тверд и хрупок. Обладает диамагнитными свойствами. На воздухе он покрывается тонкой окисной пленкой предающей металлу серый, матовый цвет и предохраняющей от дальнейшей коррозии. Сжимаемость бериллия очень мала. Меньше всех металлов (в 17 раз меньше Аl) задерживает рентгеновское излучение. Он кристаллизуется в ГПУ-структуре с периодами а=0,228 нм, и с=0,358 нм, КЧ=6. При 1254 о С гексагональная a-модификация переходит в кубическую b. Бериллий образует эвтектические сплавы с Al и Si.