Преобразование декартовых координат на плоскости. Преобразование прямоугольной декартовой системы координат на плоскости. И.Привалов "Аналитическая геометрия"


Тема 5. Линейные преобразования.

Системой координат называют способ, позволяющий с помощью чисел однозначно установить положение точки относительно некоторой геометрической фигуры. Примерами могут служить система координат на прямой – координатная ось и прямоугольные декартовы системы координат соответственно на плоскости и в пространстве.

Выполним переход от одной системы координат xy на плоскости к другой системе , т.е. выясним, как связаны между собой декартовы координаты одной и той же точки в этих двух системах.

Рассмотрим сначала параллельный перенос прямоугольной декартовой системы координат xy, т. е. случай, когда оси и новой системы параллельны соответствующим осям x и y старой системы и имеют с ними одинаковые направления.

Если известны координаты точек M (x; y) и (a; b) в системе xy, то (рис.15) в системе точка М имеет координаты: .

Пусть отрезок ОМ длины ρ образует угол с осью и . Тогда (рис.16) с осью х отрезок ОМ образует угол и координаты точки M в системе хy равны , .

Учитывая, что в системе координаты точки М равны и , получаем

При повороте же на угол «по часовой стрелке» соответственно получим:

Задача 0.54 . Определить координаты точки М(-3; 7) в новой системе координат x / y / , начало 0 / которой находится в точке (3; -4), а оси параллельны осям старой системы координат и одинаково с ними направлены.

Решение . Подставим известные координаты точек М и О / в формулы: x / = x-a, y / = y-b.
Получим: x / = -3-3=-6, y / = 7-(-4)=11. Ответ : М / (-6; 11).

§2. Понятие линейного преобразования, его матрица.

Если каждому элементу х множества Х по некоторому правилу f соответствует один и только один элемент y множества Y, то говорят, что задано отображение f множества Х в множество Y, а множество Х называют областью определения отображения f. Если, в частности, элементу х 0 Î Х соответствует элемент у 0 Î Y, то пишут у 0 = f (х 0). В этом случае элемент у 0 называют образом элемента х 0 , а элемент х 0 - прообразом элемента у 0 . Подмножество Y 0 множества Y, состоящее из всех образов, называют множеством значений отображения f.

Если при отображении f различным элементам множества Х соответствуют различные элементы множества Y, то отображение f называют обратимым .

Если У 0 =У, то отображение f называют отображением множества Х на множествоY.

Обратимое отображение множества Х на множество Y называют взаимно однозначным .

Частными случаями понятия отображения множества в множество являются понятие числовой функции и понятие геометрического отображения .

Если отображение f каждому элементу множества Х сопоставляет единственный элемент этого же множества Х, то такое отображение называют преобразованием множества Х.

Пусть задано множество n-мерных векторов линейного пространства L n .

Преобразование f n-мерного линейного пространства L n называют линейным преобразованием, если

для любых векторов из L n и любых действительных чисел α и β. Иначе говоря, преобразование называется линейным, если линейная комбинация векторов переходит в линейную комбинацию их образов с теми же коэффициентами.

Если в некотором базисе задан вектор и преобразование f линейное, то по определению , где -образы базисных векторов.

Следовательно, линейное преобразование вполне определено , если заданы образы базисных векторов рассматриваемого линейного пространства:

(12)

Матрицу в которой k-тый столбец является координатным столбцом вектора в базисе , называют матрицей линейногопреобразования f в этом базисе.

Определитель det L называют определителем преобразования f и Rg L называют рангом линейного преобразования f.

Если матрица линейного преобразования невырожденная, то и само преобразование невырожденное. Оно преобразует взаимно однозначно пространство L n в себя самого, т.е. каждый вектор из L n является образом его некоторого единственного вектора.

Если матрица линейного преобразования вырожденная, то и само преобразование вырожденное. Оно преобразует линейное пространство L n в некоторую его часть.

Теорема. В результате применения линейного преобразования f с матрицей L к вектору получается вектор такой, что .


Числа, записанные в скобках, являются координатами вектора по базису :

(13)

По определению операции умножения матриц систему (13) можно заменить матричным

равенством , что и требовалось доказать.

Примеры линейных преобразований.

1. Растяжение вдоль оси х в к 1 раз, а вдоль оси у в к 2 раз на плоскости ху определяется матрицей и формулы преобразования координат имеют вид: х / = k 1 x; y / = k 2 y.

2. Зеркальное отражение относительно оси у на плоскости ху определяется матрицей и формулы преобразования координат имеют вид: x / = -x, y / = y.

Глава I. Векторы на плоскости и в пространстве

§ 13. Переход от одной прямоугольной декартовой системы координат к другой

Данную тему мы предлагаем Вам рассмотреть в двух вариантах.

1) По учебнику И.И.Привалов "Аналитическая геометрия" (учебник для высших технических учебных заведений 1966 г.)

И.И.Привалов "Аналитическая геометрия"

§ 1. Задача преобразования координат.

Положение точки на плоскости определяется двумя координатами относительно некоторой системы координат. Координаты точки изменятся, если мы выберем другую систему координат.

Задача преобразования координат состоит в том, чтобы, зная координаты точки в одной системе координат, найти ее координаты в другой системе .

Эта задача будет разрешена, если мы установим формулы, связывающие координаты произвольной точки по двум системам, причем в коэффициенты этих формул войдут постоянные величины, определяющие взаимное положение систем.

Пусть даны две декартовы системы координат хОу и XO 1 Y (рис. 68).

Положение новой системы XO 1 Y относительно старой системы хОу будет определено, если известны координаты а и b нового начала O 1 по старой системе и угол α между осями Ох и О 1 Х . Обозначим через х и у координаты произвольной точки М относительно старой системы, через X и Y-координаты той же точки относительно новой системы. Наша задача заключается в том, чтобы старые координаты х и у выразить через новые X и Y. В полученные формулы преобразования должны, очевидно, входить постоянные a, b и α .

Решение этой общей задачи мы получим из рассмотрения двух частных случаев.

1. Меняется начало координат, направления же осей остаются неизменными (α = 0).

2. Меняются направления осей, начало же координат остается неизменным (а = b = 0).

§ 2. Перенос начала координат.

Пусть даны две системы декартовых координат с разными началами O и O 1 и одинаковыми направлениями осей (рис. 69).

Обозначим через а и b координаты нового начала О 1 в старой системе и через х, у и X , Y -координаты произвольной точки М соответственно в старой и новой системах. Проектируя точку М на оси О 1 Х и Ох , а также точку О 1 на ось Ох , получим на оси Ох три точки О, А и Р . Величины отрезков ОА , АР и ОР связаны следующим соотношением:

| ОА | + | АР | = | ОР |. (1)

Заметив, что | ОА | = а , | ОР | = х , | АР | = | О 1 Р 1 | = Х , перепишем равенство (1) в виде:

а + X = x или x = X + а . (2)

Аналогично, проектируя М и О 1 на ось ординат, получим:

y = Y + b (3)

Итак, старая координата равна новой плюс координата нового начала по старой системе.

Из формул (2) и (3) новые координаты можно выразить через старые:

Х = х - а , (2")

Y = y - b . (3")

§ 3. Поворот осей координат.

Пусть даны две декартовы системы координат с одинаковым началом О и разными направлениями осей (рис. 70).

Пусть α есть угол между осями Ох и ОХ . Обозначим через х, у и X, Y координаты произвольной точки М соответственно в старой и новой системах:

х = | ОР | , у = | РM | ,

X = | ОР 1 |, Y = | Р 1 M |.

Рассмотрим ломаную линию ОР 1 MP и возьмем ее проекцию на ось Ох . Замечая, что проекция ломаной линии равна проекции замыкающего отрезка (гл. I, § 8) имеем:

ОР 1 MP = | ОР |. (4)

С другой стороны, проекция ломаной линии равна сумме проекций ее звеньев (гл. I, § 8); следовательно, равенство (4) запишется так:

пр ОР 1 + пр Р 1 M + пp MP = | ОР | (4")

Так как проекция направленного отрезка равна его величине, умноженной на косинус угла между осью проекций и осью, на которой лежит отрезок (гл. I, § 8), то

пр ОР 1 = X cos α

пр Р 1 M = Y cos (90° + α ) = - Y sin α ,

пp MP = 0.

Отсюда равенство (4") нам дает:

x = X cos α - Y sin α . (5)

Аналогично, проектируя ту же ломаную на ось Оу , получим выражение для у . В самом деле, имеем:

пр ОР 1 + пр Р 1 M + пp MP = пp ОР = 0.

Заметив, что

пр ОР 1 = X cos (α - 90°) = X sin α ,

пр Р 1 M = Y cos α ,

пp MP = - y ,

будем иметь:

X sin α + Y cos α - y = 0,

y = X sin α + Y cos α . (6)

Из формул (5) и (6) мы получим новые координаты X и Y выраженными через старые х и у , если разрешим уравнения (5) и (6) относительно X и Y .

Замечание. Формулы (5) и (6) могут быть получены иначе.

Из рис. 71 имеем:

х = ОР = ОМ cos (α + φ ) = ОМ cos α cos φ - ОМ sin α sin φ ,

у = РМ = ОМ sin (α + φ ) = ОМ sin α cos φ + ОМ cos α sin φ .

Так как (гл. I, § 11) OM cos φ = X , ОМ sin φ =Y , то

x = X cos α - Y sin α , (5)

y = X sin α + Y cos α . (6)

§ 4. Общий случай.

Пусть даны две декартовы системы координат с разными началами и разными направлениями осей (рис. 72).

Обозначим через а и b координаты нового начала О , по старой системе, через α -угол поворота координатных осей и, наконец, через х, у и X, Y - координаты произвольной точки М соответственно по старой и новой системам.

Чтобы выразить х и у через X и Y , введем вспомогательную систему координат x 1 O 1 y 1 , начало которой поместим в новом начале О 1 , а направления осей возьмем совпадающими с направлениями старых осей. Пусть x 1 и y 1 , обозначают координаты точки М относительно этой вспомогательной системы. Переходя от старой системы координат к вспомогательной, имеем (§ 2):

х = х 1 + а , у = у 1 + b .

х 1 = X cos α - Y sin α , y 1 = X sin α + Y cos α .

Заменяя х 1 и y 1 в предыдущих формулах их выражениями из последних формул, найдем окончательно:

x = X cos α - Y sin α + a

y = X sin α + Y cos α + b (I)

Формулы (I) содержат как частный случай формулы §§ 2 и 3. Так, при α = 0 формулы (I) обращаются в

x = X + а , y = Y + b ,

а при а = b = 0 имеем:

x = X cos α - Y sin α , y = X sin α + Y cos α .

Из формул (I) мы получим новые координаты X и Y выраженными через старые х и у , если уравнения (I) разрешим относительно X и Y .

Отметим весьма важное свойство формул (I): они линейны относительно X и Y , т. е. вида:

x = AX + BY + C , y = A 1 X + B 1 Y + C 1 .

Легко проверить, что новые координаты X и Y выразятся через старые х и у тоже формулами первой степени относительно х и у.

Г.Н.Яковлев "Геометрия"

§ 13. Переход от одной прямоугольной декартовой системы координат к другой

Выбором прямоугольной декартовой системы координат устанавливается взаимно однозначное соответствие между точками плоскости и упорядоченными парами действительных чисел. Это означает, что каждой точке плоскости соответствует единственная пара чисел и каждой упорядоченной паре действительных чисел соответствует единственная точка.

Выбор той или иной системы координат ничем не ограничен и определяется в каждом конкретном случае только соображениями удобства. Часто одно и то же множество приходится рассматривать в разных координатных системах. Одна и та же точка в разных системах имеет, очевидно, различные координаты. Множество точек (в частности, окружность, парабола, прямая) в разных системах координат задается различными уравнениями.

Выясним, как преобразуются координаты точек плоскости при переходе от одной координатной системы к другой.

Пусть на плоскости заданы две прямоугольные системы координат: О, i, j и О", i", j" (рис. 41).

Первую систему с началом в точке О и базисными векторами i и j условимся называть старой, вторую - с началом в точке О" и базисными векторами i" и j" - новой.

Положение новой системы относительно старой будем считать известным: пусть точка О" в старой системе имеет координаты (a;b ), a вектор i" образует с вектором i угол α . Угол α отсчитываем в направлении, противоположном движению часовой стрелки.

Рассмотрим произвольную точку М. Обозначим ее координаты в старой системе через (х;у ), в новой - через (х";у" ). Наша задача - установить зависимость между старыми и новыми координатами точки М.

Соединим попарно точки О и О", О" и М, О и М. По правилу треугольника получаем

OM > = OO" > + O"M > . (1)

Разложим векторы OM > и OO" > по базисным векторам i и j , а вектор O"M > по базисным векторам i" и j" :

OM > = xi + yj , OO" > = ai + bj , O"M > = x"i "+ y"j "

Теперь равенство (1) можно записать так:

xi + yj = (ai + bj ) + (x"i "+ y"j "). (2)

Новые базисные векторы i" и j" раскладываются по старым базисным векторам i и j следующим образом:

i" = cos α i + sin α j ,

j" = cos ( π / 2 + α ) i + sin ( π / 2 + α ) j = - sin α i + cos α j .

Подставив найденные выражения для i" и j" в формулу (2), получим векторное равенство

xi + yj = ai + bj + х" (cos α i + sin α j ) + у" (- sin α i + cos α j )

равносильное двум числовым равенствам:

х = а + х" cos α - у" sin α ,
у
= b + х" sin α + у" cos α

Формулы (3) дают искомые выражения для старых координат х и у точки через ее новые координаты х" и у" . Для того чтобы найти выражения для новых координат через старые, достаточно решить систему уравнении (3) относительно неизвестных х" и у" .

Итак, координаты точек при переносе начала координат в точку (а; b ) и повороте осей на угол α преобразуются по формулам (3).

Если изменяется только начало координат, а направления осей остаются прежними, то, полагая в формулах (3) α = 0, получаем

Формулы (5) называют формулами поворота .

Задача 1. Пусть координаты нового начала в старой системе (2; 3), а координаты точки А в старой системе (4; -1). Найти координаты точки А в новой системе, если направления осей остаются прежними.

По формулам (4) имеем

Ответ. A (2; -4)

Задача 2. Пусть координаты точки Р в старой системе (-2; 1), а в новой системе, направления осей которой те же самые, координаты этой точки (5; 3). Найти координаты нового начала в старой системе.

А По формулам (4) получаем

- 2 = а + 5
1 = b + 3

откуда а = - 7, b = - 2.

Ответ. (-7; -2).

Задача 3. Координаты точки А в новой системе (4; 2). Найти координаты этой точки в старой системе, если начало координат осталось прежним, а оси координат старой системы повернуты на угол α = 45°.

По формулам (5) находим

Задача 4. Координаты точки A в старой системе (2 √3 ; - √3 ). Найти координаты этой точки в новой системе, если начало координат старой системы перенесено в точку (-1;-2), а оси повернуты на угол α = 30°.

По формулам (3) имеем

Решив эту систему уравнений относительно х" и у" , найдем: х" = 4, у" = -2.

Ответ. A (4; -2).

Задача 5. Дано уравнение прямой у = 2х - 6. Найти уравнение той же прямой в новой системе координат, которая получена из старой системы поворотом осей на угол α = 45°.

Формулы поворота в данном случае имеют вид

Заменив в уравнении прямой у = 2х - 6 старые переменные х и у новыми, получим уравнение

√ 2 / 2 (x" + y" ) = 2 √ 2 / 2 (x" - y" ) - 6 ,

которое после упрощений принимает вид y" = x" / 3 - 2√2

Пусть на плоскости заданы две произвольные декартовы прямоугольные системы координат. Первая определяется началом О и базисными векторамиi j , вторая – центром О’ и базисными векторами i j .

Поставим цель выразить координаты x y некоторой точки М относительно первой системы координат через x и y – координаты той же точки относительно второй системы.

Заметим, что

Обозначим координаты точки О’ относительно первой системы через a и b:

Разложим векторы i и j по базису i j :

(*)

Кроме того, имеем:
. Введем сюда разложения векторов по базисуi j :

отсюда

Можно сделать вывод: каковы бы ни были две произвольных декартовы системы на плоскости, координаты любой точки плоскости относительно первой системы являются линейными функциями координат той же точки относительно второй системы.

Умножим скалярно уравнения (*) сначала на i , затем на j :

Обозначим через угол между векторами i и i . Система координат i j может быть совмещена с системой i j путем параллельного переноса и последующего поворота на угол . Но здесь возможен и дугой вариант: угол между базисными векторами i i также , а угол между базисными векторами j j равен  - . Эти системы нельзя совместить параллельным переносом и поворотом. Необходимо еще и изменить направление оси у на противоположное.

Из формулы (**) получаем в первом случае:

Во втором случае

Формулы преобразования имеют вид:


Второй случай мы рассматривать не будем. Условимся считать обе системы правыми.

Т.е. вывод: каковы бы ни были две правые системы координат, первая из них может быть совмещена со второй путем параллельного переноса и последующего поворота вокруг начала на некоторый угол .

Формулы параллельного переноса:

Формулы поворота осей:

Обратные преобразования:

Преобразование декартовых прямоугольных координат в пространстве.

В пространстве, рассуждая аналогичным образом, можно записать:


(***)

И для координат получить:

(****)

Итак, каковы бы ни были две произвольные системы координат в пространстве, координаты x y z некоторой точки относительно первой системы являются линейными функциями координат x y z этой же точки относительно второй системы координат.

Умножая каждое из равенств (***) скалярно на i j k получаем:

Выясним геометрический смысл формул преобразования (****). Для этого предположим, что обе системы имеют общее начало:a = b = c = 0 .

Введем в рассмотрение три угла, полностью характеризующих расположение осей второй системы относительно первой.

Первый угол – образован осью х и осью u, являющейся пересечением плоскостей xOy и x’Oy’. Направление угла – кратчайший поворот от оси x к y. Обозначим угол через . Второй угол  – это не превосходящий  угол между осями Oz и Oz’. Наконец, третий угол  – это угол между осью u и Ox’, отсчитываемый от оси u в направлении кратчайшего поворота от Ox’ к Oy’. Эти углы называются углами Эйлера.

Преобразование первой системы во вторую можно представить в виде последовательного проведения трех поворотов: на угол  относительно оси Oz; на угол  относительно оси Ox’; и на угол  относительно оси Oz’.

Числа  ij можно выразить через углы Эйлера. Эти формулы мы записывать не будем из-за громоздкости.

Само преобразование представляет собой суперпозицию параллельного переноса и трех проводимых последовательных поворотов на углы Эйлера.

Все эти рассуждения можно провести и для случая, когда обе системы левые, или разной ориентации.

Если имеем две произвольные системы, то, вообще говоря, можно их совместить путем параллельного переноса и одного поворота в пространстве вокруг некоторой оси. Искать ее не будем.

1) Переход от одной декартовой прямоугольной системы координат на плоскости к другой декартовой прямоугольной системе с той же ориентацией и с тем же началом координат.

Предположим, что на плоскости введены две декартовы прямоугольные системы координат хОу и с общим началом координат О , имеющие одинаковую ориентацию (рис. 145). Обозначим единичные векторы осей Ох и Оу соответственно через и , а единичные векторы осей и через и . Наконец пусть - угол от оси Ох до оси . Пусть х и у – координаты произвольной точки М в системе хОу , а и - координаты той же точки М в системе .

Так как угол от оси Ох до вектора равен , то координаты вектора

Угол от оси Ох до вектора равен ; поэтому координаты вектора равны .

Формулы (3) § 97 принимают вид

Матрица перехода от одной декартовой хОу прямоугольной системы координат к другой прямоугольной системе с той же ориентацией имеет вид

Матрица называется ортогональной, если сумма квадратов элементов, расположенных в каждом столбце, равна 1, а сумма произведений соответствующих элементов разных столбцов равна нулю, т.е. если

Таким образом, матрица (2) перехода от одной прямоугольной системы координат к другой прямоугольной системе с той же ориентацией ортогональная. Отметим ещё, что определитель этой матрицы равен +1:

Обратно, если задана ортогональная матрица (3) с определителем, равным +1, и на плоскости введена декартова прямоугольная система координат хОу , то в силу соотношений (4) векторы и единичные и взаимно перпендикулярные, следовательно, координаты вектора в системе хОу равны и , где - угол от вектора до вектора , а так как вектор единичный и получим из вектора поворотом на , то либо , либо .

Вторая возможность исключается, так как если бы мы имели , то а нам дано, что .

Значит, , и матрица А имеет вид

т.е. является матрицей перехода от одной прямоугольной системы координат хОу к другой прямоугольной системе , имеющей ту же ориентацию, причем угол .

2. Переход от одной декартовой прямоугольной системы координат на плоскости к другой декартовой прямоугольной системе с противоположной ориентацией и с тем же началом координат.

Пусть на плоскости введены две декартовы прямоугольные системы координат хОу и с общим начало координат О , но имеющие противоположную ориентацию обозначим угол от оси Ох до оси через (ориентацию плоскости зададим системой хОу ).

Так как угол от оси Ох до вектора равен , то координаты вектора равны:

Теперь угол от вектора до вектора равен (рис. 146), поэтому угол от оси Ох до вектора равен (по теореме Шаля для углов) и поэтому координаты вектора равны:



И формулы (3) § 97 принимают вид

Матрица перехода

ортогональная, но ее определитель равен –1 . (7)

Обратно, любая ортогональная матрица с определителем, равным –1, задает преобразование одной прямоугольной системы координат на плоскости в другую прямоугольную систему с тем же началом, но противоположной ориентации. Итак, если две декартовы прямоугольные системы координат хОу и имеют общее начало, то

где х , у – координаты любой точки в системе хОу ; и - координаты той же точки в системе , а

ортогональная матрица.

Обратно, если

произвольная ортогональная матрица, то соотношениями

выражается преобразование декартовой прямоугольной системы координат в декартовую прямоугольную систему с тем же началом координат; - координаты в системе хОу единичного вектора , дающего положительное направление оси ; - координаты в системе хОу единичного вектора , дающего положительное направление оси .

системы координат хОу и имеют одинаковую ориентацию, а в случае - противоположную.

3. Общее преобразование одной декартовой прямоугольной системы координат на плоскости в другую прямоугольную систему.

На основании пунктов 1) и 2) этого параграфа, а также на основании § 96 заключаем, что если на плоскости введены прямоугольные системы координат хОу и , то координаты х и у произвольной точки М плоскости в системе хОу с координатами и той же точки М в системе связаны соотношениями- координаты начала системы координат в системе хОу .

Заметим, что старые и новые координаты х , у и , вектора при общем преобразовании декартовой прямоугольной системы координат связаны соотношениями

в случае, если системы хОу и имеют одинаковую ориентацию и соотношениями

в случае, если эти системы имеют противоположную ориентацию, или же в виде

ортогональная матрица. Преобразования (10) и (11) называются ортогональными.