Определение количества движения механической системы. Теоремы об изменении количества движения точки и системы. Теоремы об изменении количества движения материальной точки в дифференциальной и в конечной формах


Состоящую из n материальных точек. Выделим из этой системы некоторую точку M j с массой m j . На эту точку, как известно, действуют внешние и внутренние силы .

Приложим к точке M j равнодействующую всех внутренних сил F j i и равнодействующую всех внешних сил F j e (рисунок 2.2). Для выделенной материальной точки M j (как для свободной точки) запишем теорему об изменении количества движения в дифференциальной форме (2.3):

Запишем аналогичные уравнения для всех точек механической системы (j=1,2,3,…,n) .

Рисунок 2.2

Сложим почленно все n уравнений:

∑d(m j ×V j)/dt = ∑F j e + ∑F j i , (2.9)

d∑(m j ×V j)/dt = ∑F j e + ∑F j i . (2.10)

Здесь ∑m j ×V j =Q – количество движения механической системы;
∑F j e = R e – главный вектор всех внешних сил, действующих на механическую систему;
∑F j i = R i =0 – главный вектор внутренних сил системы (по свойству внутренних сил он равен нулю).

Окончательно для механической системы получаем

dQ/dt = R e . (2.11)

Выражение (2.11) представляет собой теорему об изменении количества движения механической системы в дифференциальной форме (в векторном выражении): производная по времени от вектора количества движения механической системы равна главному вектору всех внешних сил, действующих на систему .

Проецируя векторное равенство (2.11) на декартовы оси координат, получаем выражения для теоремы об изменении количества движения механической системы в координатном (скалярном) выражении:

dQ x /dt = R x e ;

dQ y /dt = R y e ;

dQ z /dt = R z e , (2.12)

т.е. производная по времени от проекции количества движения механической системы на какую-либо ось равна проекции на эту ось главного вектора всех действующих на эту механическую систему внешних сил .

Умножая обе части равенства (2.12) на dt , получим теорему в другой дифференциальной форме:

dQ = R e ×dt = δS e , (2.13)

т.е. дифференциал количества движения механической системы равен элементарному импульсу главного вектора (сумме элементарных импульсов) всех внешних сил, действующих на систему .

Интегрируя равенство (2.13) в пределах изменения времени от 0 до t , получаем теорему об изменении количества движения механической системы в конечной (интегральной) форме (в векторном выражении):

Q — Q 0 = S e ,

т.е. изменение количества движения механической системы за конечный промежуток времени равно полному импульсу главного вектора (сумме полных импульсов) всех внешних сил, действующих на систему за тот же промежуток времени .

Проецируя векторное равенство (2.14) на декартовы оси координат, получим выражения для теоремы в проекциях (в скалярном выражении):

т.е. изменение проекции количества движения механической системы на какую-либо ось за конечный промежуток времени равно проекции на эту же ось полного импульса главного вектора (сумме полных импульсов) всех действующих на механическую систему внешних сил за тот же промежуток времени .

Из рассмотренной теоремы (2.11) – (2.15) вытекают следствия:

  1. Если R e = ∑F j e = 0 , то Q = const – имеем закон сохранения вектора количества движения механической системы: если главный вектор R e всех внешних сил, действующих на механическую систему, равен нулю, то вектор количества движения этой системы остается постоянным по величине и направлению и равным своему начальному значению Q 0 , т.е. Q = Q 0 .
  2. Если R x e = ∑X j e =0 (R e ≠ 0) , то Q x = const – имеем закон сохранения проекции на ось количества движения механической системы: если проекция главного вектора всех действующих на механическую систему сил на какую-либо ось равна нулю, то проекция на эту же ось вектора количества движения этой системы будет величиной постоянной и равной проекции на эту ось начального вектора количества движения, т.е. Q x = Q 0x .

Дифференциальная форма теоремы об изменении количества движения материальной системы имеет важные и интересные приложения в механике сплошной среды. Из (2.11) можно получить теорему Эйлера.

Аналогично тому, как для одной материальной точки, выведем теорему об изменении количества движения для системы в различных формах.

Преобразуем уравнение (теорема о движении цента масс механической системы)

следующим образом:

;

Полученное уравнение выражает теорему об изменении количества движения механической системы в дифференциальной форме: производная от количества движения механической системы по времени равна главному вектору внешних сил, действующих на систему .

В проекциях на декартовы оси координат:

; ; .

Беря интегралы от обеих частей последних уравнений по времени, получим теорему об изменении количества движения механической системы в интегральной форме: изменение количества движения механической системы равно импульсу главного вектора внешних сил, действующих на систему .

.

Или в проекциях на декартовы оси координат:

; ; .

Следствия из теоремы (законы сохранения количества движения)

Закон сохранения количества движения получаются как частные случаи теоремы об изменении количества движения для системы в зависимости от особенностей системы внешних сил. Внутренние силы могут быть любыми, так как они не влияют на изменения количества движения.

Возможны два случая:

1. Если векторная сумма всех внешних сил, приложенных к системе, равна нулю , то количество движения системы постоянно по величине и направлению

2. Если равна нулю проекция главного вектора внешних сил на какую либо координатную ось и/или и/или , то проекция количества движения на эти же оси является величиной постоянной, т.е. и/или и/или соответственно.

Аналогичные записи можно сделать и для материальной точки и для материальной точки.

Условие задачи . Из орудия, масса которого М , вылетает в горизонтальном направлении снаряд массы m со скоростью v . Найти скорость V орудия после выстрела.

Решение . Все внешние силы, действующие на механическую систему орудие-снаряд, вертикальны. Значит, на основании следствия из теоремы об изменении количества движения системы, имеем: .

Количество движения механической системы до выстрела:

Количество движения механической системы после выстрела:

.

Приравнивая правые части выражений, получим, что

.

Знак «-» в полученной формуле указывает на то, что после выстрела орудие откатится в направлении, противоположном оси Ox .

ПРИМЕР 2. Струя жидкости плотностью вытекает со скоростью V из трубы с площадью поперечного сечения F и ударяется под углом о вертикальную стенку. Определить давление жидкости на стену.

РЕШЕНИЕ. Применим теорему об изменении количества движения в интегральной форме к объему жидкости массой m ударяющемуся о стену за некоторый промежуток времени t .

УРАВНЕНИЕ МЕЩЕРСКОГО

(основное уравнение динамики тела переменной массы)

В современной технике возникают случаи, когда масса точки и системы не остается постоянной в процессе движения, а изменяется. Так, например, при полете космических ракет, вследствие выбрасывания продуктов сгорания и отдельных ненужных частей ракет, изменение массы достигает 90-95% общей начальной величины. Но не только космическая техника может быть примером динамики движения переменной массы. В текстильной промышленности происходит значительное изменения массы различных веретен, шпуль, рулонов при современных скоростях работы станков и машин.

Рассмотрим главные особенности, связанные с изменением массы, на примере поступательного движения тела переменной массы. К телу переменной массы нельзя непосредственно применить основной закон динамики. Поэтому получим дифференциальные уравнения движения точки переменной массы, применяя теорему об изменении количества движения системы.

Пусть точка массой m+dm движется со скоростью . Затем происходит отрыв от точки некоторой частицы массой dm движущейся со скоростью .

Количество движения тела до отрыва частицы:

Количество движения системы, состоящей из тела и оторвавшейся частицы, после ее отрыва:

Тогда изменение количества движения:

Исходя из теоремы об изменении количества движения системы:

Обозначим величину - относительная скорость частицы:

Обозначим

Величину R называют реактивной силой. Реактивная сила является тягой двигателя, обусловленная выбросом газа из сопла.

Окончательно получим

-

Данная формула выражает основное уравнение динамики тела переменной массы (формула Мещерского). Из последней формулы следует, что дифференциальные уравнения движения точки переменной массы имеют такой же вид, как и для точки постоянной массы, кроме приложенных к точке дополнительно реактивной силы, обусловленной изменением массы.

Основное уравнение динамики тела переменной массы свидетельствует о том, что ускорение этого тела формируется не только за счет внешних сил, но и за счет реактивной силы.

Реактивная сила – это сила, родственная той, которую ощущает стреляющий человек - при стрельбе из пистолета она ощущается кистью руки; при стрельбе из винтовки воспринимается плечом.

Первая формула Циолковского (для одноступенчатой ракеты)

Пусть точка переменной массы или ракета движется прямолинейно под действием только одной реактивной силы. Так как для многих современных реактивных двигателей , где - максимально допускаемая конструкцией двигателя реактивная сила (тяга двигателя); - сила тяжести, действующая на двигатель, находящийся на земной поверхности. Т.е. изложенное позволяет составляющей в уравнении Мещерского пренебречь и к дальнейшему анализу принять это уравнение в форме: ,

Обозначим:

Запас топлива (при жидкостных реактивных двигателях - сухая масса ракеты (остающаяся её масса после выгорания всего топлива);

Масса отделившихся от ракеты частиц; рассматривается как переменная величина, изменяющаяся от до .

Запишем уравнение прямолинейного движения точки переменной массы в следующем виде вид

.

Так как формула для определения переменной массы ракеты

Следовательно, уравнения движения точки Беря интегралы от обеих частей получим

где - характеристическая скорость – это скорость, которую приобретает ракета под действием тяги после извержения из ракеты всех частиц (при жидкостных реактивных двигателях – после выгорания всего топлива).

Вынесенная за знак интеграла (что можно делать на основании известной из высшей математики теоремы о среднем) - это средняя скорость извергаемых из ракеты частиц.

Количество движения системы, как векторная величина, определяется формулами (4.12) и (4.13).

Теорема. Производная от количества движения системы по времени равна геометрической сумме всех действующих на нее внешних сил.

В проекциях декартовые оси получим скалярные уравнения.

Можно записать векторное

(4.28)

и скалярные уравнения

Которые выражают теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов за тот же промежуток времени. При решении задач чаще используются уравнения (4.27)

Закон сохранения количества движения

Теорема об изменении кинетического момента

Теорема об изменении момента количества движения точки относительно центра: производная по времени от момента количества движения точки относительно неподвижного центра равна векторному моменту, действующей на точку силы относительно того же центра.

или (4.30)

Сравнивая (4.23) и (4.30), видим, что моменты векторов и связаны такой же зависимостью, какой связаны сами векторы и (рис. 4.1). Если спроектировать равенство на ось , проходящую через центр О, то получим

(4.31)

Это равенство выражает теорему момента количества движения точки относительно оси.

Рис. 4.1.
Теорема об изменении главного момента количества движения или кинетического момента механической системы относительно центра: производная по времени от кинетического момента системы относительно некоторого неподвижного центра равно сумме моментов всех внешних сил относительно того же центра.

(4.32)

Если спроектировать выражение (4.32) на ось , проходящей через центр О, то получим равенство, характеризующее теорему об изменении кинетического момента относительно оси.

(4.33)

Подставляя (4.10) в равенство (4.33) можно записать дифференциальное уравнение вращающегося твердого тела (колес, осей, валов, роторов и т.д.) в трех формах.

(4.34)

(4.35)

(4.36)

Таким образом, теорему об изменении кинетического момента целесообразно использовать для исследования весьма распространенного в технике движения твердого тела, его вращения вокруг неподвижной оси.

Закон сохранения кинетического момента системы

1. Пусть в выражении (4.32) .

Тогда из уравнения (4.32) следует, что , т.е. если сумма моментов всех приложенных к системе вешних сил относительно данного центра равно нулю, то кинетический момент системы относительно этого центра будет численно и по направлению будет постоянен.

2. Если , то . Таким образом, если сумма моментов действующих на систему внешних сил относительно некоторой оси равна нулю, то кинетический момент системы относительно этой оси будет величиной постоянной.

Эти результаты выражают собой закон сохранения кинетического момента.

В случае вращающегося твердого тела из равенства (4.34) следует, что, если , то . Отсюда приходим к следующим выводам:

Если система неизменяема (абсолютно твердое тело), то , следовательно, и и твердое тело вращается вокруг неподвижной оси с постоянной угловой скоростью.

Если система изменяема, то . При увеличении (тогда отдельные элементы системы удаляются от оси вращения) угловая скорость уменьшается, т.к. , а при уменьшении увеличивается, таким образом, в случае изменяемой системы с помощью внутренних сил можно изменить угловую скорость.

Вторая задача Д2 контрольной работы посвящена теореме об изменении кинетического момента системы относительно оси.

Задача Д2

Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2м) массой кг вращается с угловой скоростью вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д2,0 – Д2,9, табл. Д2); размеры для всех прямоугольных платформ показаны на рис. Д2,0а (вид сверху).

В момент времени по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой кг по закону , где s выражено в метрах, t - в секундах. Одновременно на платформы начинает действовать пара сил с моментом M (задан в ньютонометрах; при M < 0 его направление противоположно показанному на рисунках).

Определить, пренебрегая массой вала, зависимость т.е. угловую скорость платформы, как функцию времени.

На всех рисунках груз D показан в положении, при котором s > 0 (когда s < 0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось z на заданном расстоянии OC = b от центра C.

Указания. Задача Д2 – на применение теоремы об изменении кинетического момента системы. При применении теоремы к системе, состоящей из платформы и груза, кинетический момент системы относительно оси z определяется как сумма моментов платформы и груза. При этом следует учесть, что абсолютная скорость груза складывается из относительной и переносной скоростей, т.е. . Поэтому и количество движения этого груза . Тогда можно воспользоваться теоремой Вариньона (статика), согласно которой ; эти моменты вычисляются так же, как моменты сил. Подробнее ход решения разъяснен в примере Д2.

При решении задачи полезно изобразить на вспомогательном чертеже вид на платформу сверху (с конца z), как это сделано на рис. Д2,0,а – Д2,9, а.

Момент инерции пластины с массой m относительно оси Cz, перпендикулярной пластине и проходящей через ее центр масс, равен: для прямоугольной пластины со сторонами и

;

Для круглой пластины радиуса R


Номер условия b s = F(t) M
R R/2 R R/2 R R/2 R R/2 R R/2 -0.4 0.6 0.8 10 t 0.4 -0.5t -0.6t 0.8t 0.4 0.5 4t -6 -8t -9 6 -10 12

Рис. Д2.0
Рис. Д2.0а

Рис. Д2.1
Рис. Д2.1а

Рис. Д2.2
Рис. Д2.2а

Рис. Д2.3
Рис. Д2.3а

Рис. Д2.4
Рис. Д2.4а

Рис. Д2.5а
Рис. Д2.5

Рис. Д2.6
Рис. Д2.6а

Рис. Д2.7
Рис. Д2.7а

Рис. Д2.8
Рис. Д2.8а

Рис. Д2.9
Рис. Д2.9а

Рис. Д2

Пример Д2 . Однородная горизонтальная платформа (прямоуголь­ная со сторонами 2l и l), имеющая массу жестко скреплена с вертикальным валом и вращается вместе с ним вокруг оси z с угло­вой скоростью (рис. Д2а). В момент времени на вал начинает действовать вращающий момент М, направленный противо­положно ; одновременно груз D массой , находящийся в желобе АВ в точке С, начинает двигаться по желобу (под действием внутрен­них сил) по закону s = CD = F(t).

Дано: m 1 = 16 кг, т 2 = 10 кг, l = 0,5 м, = 2 , s = 0,4t 2 (s - в метрах, t - в секундах), М = kt, где k =6 Нм/с. Опре­делить: - закон изменения угловой скорости платформы.

Решение. Рассмотрим механическую систему, состоящую из плат­формы и груза D. Для определения w применим теорему об изменении кинетического момента системы относительно оси z:

(1)

Изобразим действующие на систему внешние силы: силы тяжести реакции и вращающий момент M. Так как силы и параллельны оси z, а реакции и эту ось пересекают, то их моменты относительно оси z равны нулю. Тогда, считая для момента положительным направление (т. е. против хода часовой стрелки), получим и уравнение (1) примет такой вид.

и механической системы

Количество движения материальной точки – это векторная мера механического движения, равная произведению массы точки на ее скорость, . Единица измерения количества движения в системе СИ –
. Количество движения механической системы равно сумме количеств движений всех материальных точек, образующих систему:

. (5.2)

Преобразуем полученную формулу

.

Согласно формуле (4.2)
, поэтому

.

Таким образом, количество движения механической системы равно произведению ее массы на скорость центра масс:

. (5.3)

Поскольку количество движения системы определяется движением только одной ее точки (центра масс), оно не может быть полной характеристикой движения системы. Действительно, при любом движении системы, когда ее центр масс остается неподвижным, количество движения системы равно нулю. Например, это имеет место при вращении твердого тела вокруг неподвижной оси, проходящей через его центр масс.

Введем систему отсчетаCxyz , имеющую начало в центре масс механической системыС и движущуюся поступательно относительно инерциальной системы
(рис. 5.1). Тогда движение каждой точки
можно рассматривать как сложное: переносное движение вместе с осямиCxyz и движение относительно этих осей. В силу поступательности движения осейCxyz переносная скорость каждой точки равна скорости центра масс системы, и количество движения системы, определяемое по формуле (5.3) , характеризует только ее поступательное переносное движение.

5.3. Импульс силы

Для характеристики действия силы за некоторый промежуток времени используют величину, называемую импульсом силы . Элементарный импульс силы – это векторная мера действия силы, равная произведению силы на элементарный промежуток времени ее действия:

. (5.4)

Единица измерения импульса силы в системе СИ равна
, т.е. размерности импульса силы и количества движения одинаковы.

Импульс силы за конечный промежуток времени
равен определенному интегралу от элементарного импульса:

. (5.5)

Импульс постоянной силы равен произведению силы на время ее действия:

. (5.6)

В общем случае импульс силы может быть определен по его проекциям на координатные оси:

. (5.7)

5.4. Теорема об изменении количества движения

материальной точки

В основном уравнении динамики (1.2) масса материальной точки – величина постоянная, ее ускорение
, что дает возможность записать это уравнение в виде:

. (5.8)

Полученное соотношение позволяет сформулировать теорему об изменении количества движения материальной точки в дифференциальной форме:Производная по времени от количества движения материальной точки равна геометрической сумме (главному вектору) действующих на точку сил .

Теперь получим интегральную форму этой теоремы. Из соотношения (5.8) следует, что

.

Проинтегрируем обе части равенства в пределах, соответствующих моментам времени и,

. (5.9)

Интегралы в правой части представляют собой импульсы сил, действующих на точку, поэтому после интегрирования левой части получим

. (5.10)

Таким образом, доказана теорема об изменении количества движения материальной точки в интегральной форме:Изменение количества движения материальной точки за некоторый промежуток времени равно геометрической сумме импульсов действующих на точку сил за тот же промежуток времени .

Векторному уравнению (5.10) соответствует система трех уравнений в проекциях на координатные оси:

;

; (5.11)

.

Пример 1. Тело движется поступательно по наклонной плоскости, образующей угол α с горизонтом. В начальный момент времени оно имело скорость, направленную вверх по наклонной плоскости (рис. 5.2).

Через какое время скорость тела станет равной нулю, если коэффициент трения равен f ?

Примем поступательно движущееся тело за материальную точку и рассмотрим действующие на него силы. Это сила тяжести
, нормальная реакция плоскостии сила трения. Направим осьx вдоль наклонной плоскости вверх и запишем 1-е уравнение системы (5.11)

где проекции количеств движения , а проекции импульсов постоянных сил
,иравны произведениям проекций сил на время движения:

Так как ускорение тела направлено вдоль наклонной плоскости, сумма проекций на осьy всех действующих на тело сил равна нулю:
, откуда следует, что
. Найдем силу трения

и из уравнения (5.12) получим

откуда определим время движения тела

.

По определению количеством движения системы называется вектор

Поэтому в соответствии со вторым законом Ньютона

и в силу соотношения (5)

Это утверждение называется теоремой об изменении количества движения (импульса) системы:

Производная по времени от количества движения системы равна главному вектору всех действующих на систему внешних сил.

Проектируя равенство (7) на любую неподвижную ось , получаем

где - проекция на ось вектора , а - проекция на нее вектора .

Если система замкнута, то по определению на ее точки не действуют внешние силы, , т. е.

(9)

Тем самым устанавливается закон сохранения количества движения: При движении замкнутой системы количество движения (импульс) системы не меняется.

Это утверждение справедливо, разумеется, и для системы, на которую действуют внешние силы, если .

Из равенства (8) следует, что если , то , т. е. что у любой системы проекция количества движения на некоторую ось не изменяется во время движения, если главный вектор внешних сил системы перпендикулярен этой оси.

Теореме об изменении количества движения и закону сохранения количества движения можно придать иную форму, если ввести понятие о центре инерции системы.

Центром инерции системы называется геометрическая точка

С пространства, определяемая радиусом-вектором

Величина называется массой системы.

Во время движения точек системы меняются , а значит, меняется и , т. е. при движении точек системы движется и ее центр инерции. Траекторией центра инерции служит геометрическое место (годограф) концов векторов , а скорость точки С направлена по касательной к этому годографу и определяется равенством

которое получается дифференцированием равенства (10) по .

Из равенства (11) следует, что

т. е. что количество движения системы равно массе системы, умноженной на скорость ее центра инерции.

Из теоремы об изменении количества движения следует тогда

Но равенство (13) выражает второй закон Ньютона для материальной точки, помещенной в центре инерции и движущейся вместе с ним, если масса этой точки равна М и если к ней приложена сила . Отсюда следует, что теорему изменении количества движения можно сформулировать так:

При движении системы материальных точек ее центр инерции движется так, как двигалась бы материальная точка, помещенная в центре инерции, если бы в ней были сконцентрированы массы всех точек системы и к ней были бы приложены все внешние силы, действующие на точки системы.

В такой формулировке теорему об изменении количества движения называют теоремой о движении центра инерции.

У замкнутых систем и

(14)

Поэтому закон сохранения количества движения можно сформулировать так: центр инерции замкнутой системы движется с постоянной скоростью (быть может, равной нулю).

Разумеется, это утверждение верно и для проекций соответствующих векторов. Если проекция главного вектора внешних сил на некоторую ось тождественно равна нулю, то центр инерции движется так, что проекция скорости центра инерции на эту ось остается постоянной.

Далее иногда будет удобно вводить в рассмотрение вспомогательную систему отсчета, которая движется поступательно и начало которой помещено в центр инерции системы. Такую систему отсчета будем называть далее центральной. В том случае, когда скорость центра инерции постоянна, центральная система является инерциальной.