Электронный парамагнитный резонанс. Применение эпр Условие эпр


Явление магнитного резонанса. Электронный парамагнитный резонанс (ЭПР)

В предыдущем параграфе рассматривалось расщепление спектральных линий, связанное с переходами между подуровнями расщепленных в магнитном поле разных энергетических уровней. Такие переходы соответствуют оптическому диапазону частот. Наряду с этим в дипольном приближении возможны переходы между соседними подуровнями расщепившегося в магнитном поле уровня энергии согласно правилам отбора:

Из формулы (3.95) следует, что таким переходам соответствуют частоты:

При В ~ 0,3 Тл частота v * Ю 10 Гц, а длина волны X ~ 3 см. Это - микроволновый диапазон частот, или диапазон СВЧ. Вероятность дипольных переходов пропорциональна v 3 , поэтому в СВЧ-диапазо- не она ничтожно мала по сравнению с вероятностью в оптическом диапазоне. Кроме того, для атомов с одним валентным электроном переходы в этом случае запрещены правилом отбора AL = ±. Однако вероятность переходов становится значительной при наложении дополнительного внешнего переменного магнитного поля, т. е. когда переходы становятся вынужденными. Из дальнейшего будет ясно, что переменное магнитное поле должно быть перпендикулярным стационарному магнитному полю, вызывающему зеемановское расщепление уровней энергии. Если частота переменного магнитного поля равна частоте перехода (3.101), то происходит поглощение его энергии или вынужденное излучение. При этом скачком изменяется ориентация магнитного момента атома, т. е. его проекция на выделенное направление.

Излучение или поглощение электромагнитных волн при изменении ориентации магнитных дипольных моментов атомов в магнитном поле называют явлением магнитного резонанса.

Последовательное описание магнитного резонанса довольно сложно. Качественную картину этого явления можно понять на основе простой классической модели. Если частица обладает магнитным моментом М, то во внешнем постоянном магнитном поле В 0 =(0,0, В 0) на нее действует вращающий момент К = МхВ 0 . Поскольку магнитный М и механический J моменты частицы (например, электрона в атоме) связаны соотношением:

где у - гиромагнитное отношение, y = gi b /h = eg/2m e , то уравнение движения можно записать в виде:

Это уравнение волчка, которое показывает, что механический и магнитный моменты совершают прецессию вокруг В 0 . Угловая скорость (частота) этой прецессии равна:

В магнитном поле, направленном вдоль оси z , частица приобретает дополнительную энергию:

Частота перехода между соседними подуровнями энергии совпадает с частотой прецессии:

Рис. 3.34

Если добавить изменяющееся с частотой ш магнитное поле В, перпендикулярное стационарному полю В 0 (рис. 3.34), то на частицу будет действовать дополнительный переменный вращающий момент [МхВ,1. Когда частоты прецессии и изменения поля В! сильно отличаются друг от друга, то при |В,|z, так что в среднем этот угол не меняется. Однако, если частота изменения поля В, совпадает с частотой прецессии (3.104), то магнитный момент оказывается как бы в статических условиях и дополнительный вращающий момент стремится его «опрокинуть». Поскольку магнитный момент является квантовым вектором, то его проекция на направление статического магнитного поля может измениться только скачком, что соответствует переходу на соседний расщепленный подуровень. В этом и состоит явление магнитного резонанса.

Если магнитный и механический моменты атома обусловлены его электронами, то в этом случае магнитный резонанс называют электронным парамагнитным резонансом (ЭПР). Когда моменты определяются ядром атома, то магнитный резонанс называют ядерным магнитным резонансом (ЯМР), который впервые наблюдал в опытах с молекулярными пучками Раби в 1938 г. Существуют также ферромагнитный и антиферромагнитный резонансы , связанные с изменением ориентации электронных магнитных моментов в ферромагнетиках и антиферромагнетиках. Далее рассмотрим подробнее ЭПР.

Электронным парамагнетизмом обладают: все атомы и молекулы с нечетным числом электронов (неспаренные, некомпенсированные электроны) на внешних электронных оболочках, поскольку в этом случае полный спин системы не равен нулю (свободные атомы натрия, газообразный оксид азота и т. д.); атомы и ионы с незаполненной внутренней электронной оболочкой (редкоземельные элементы, актиниды и др.) и т. д. ЭПР представляет собой совокупность явлений, связанных с квантовыми переходами, происходящими между энергетическими уровнями макроскопических систем под влиянием переменного магнитного поля резонансной частоты.

В эксперименте явление ЭПР впервые наблюдал Е. К. Завойский в 1944 г. ЭПР служит мощным средством изучения свойств парамагнитных веществ в макроскопических количествах. В этом случае имеется не одна, а много частиц, обладающих магнитными моментами. Макроскопической магнитной характеристикой вещества является вектор намагничивания 1 = , где N - число частиц в единице

объема вещества; - средний магнитный момент частиц. Систему моментов всех парамагнитных частиц данного вещества называют спин-системой. Остальные степени свободы парамагнетика - окружение магнитных моментов - называют «решеткой». В связи с этим рассматривают два типа взаимодействия: магнитных моментов между собой (спин-спиновое взаимодействие) и магнитных моментов со своим окружением (спин-решеточнос взаимодействие). В изолированной спин-системе не происходит стационарного поглощения энергии переменного поля. В самом деле до включения переменного магнитного поля число частиц в основном состоянии больше их числа N 2 в возбужденном состоянии. При поглощении энергии число частиц JV, уменьшается, а число N 2 увеличивается. Это будет происходить, пока N ] и N 2 не сравняются. Тогда достигается насыщение, и дальнейшее поглощение энергии прекращается. С учетом взаимодействия спин-системы с решеткой стационарное поглощение энергии становится возможным. Решетка служит в качестве стока энергии и в процессе нагревается.

Изменение вектора намагничивания описывается уравнением Блоха:

где a = (x,y,z)‘ t у - гиромагнитное отношение; 1 0 - равновесное значение вектора намагничивания в постоянном магнитном поле в 0 =(0,0, В 0); т х - время спин-спиновой (или поперечной) релаксации, т х =т у =т 2 ; t z - время спин-решеточной (или продольной)

релаксации, т^ =т,. Значения величин т, и т 2 зависят от особенностей взаимодействия каждой частицы с окружающими ее частицами. Определение этих времен релаксации является основной экспериментальной задачей метода магнитного резонанса. В уравнении

(3.106) первый член записан по аналогии с уравнением движения одиночного магнитного момента (3.103). Второй член обусловлен спин-спиновым и спин-решеточным взаимодействиями, которые определяют достижение системой равновесного состояния.

Поглощаемая парамагнитным веществом мощность излучения /(со) вычисляется с помощью уравнения (3.106). Она определяется формулой

где А - некоторый множитель; В ] - амплитуда переменного магнитного поля. Форма кривой поглощения определяется функцией

где о) 0 - частота прецессии, о) 0 =у# 0 .

Отсюда видно, что поглощение носит резонансный характер (рис. 3.35). Кривая поглощения имеет лоренцевскую форму и достигает максимума при резонансе: со=со 0 . Ширина линии поглощения:

В достаточно слабом высокочастотном магнитном поле ширина кривой поглощения определяется временем спин-спиновой релаксации. С увеличением этого поля линия поглощения уширяется. По ширине кривой поглощения определяют времена релаксации, которые связаны со свойствами вещества. Для достижения резонанса на опыте оказывается удобнее изменять не частоту о переменного магнитного поля, а частоту прецессии с помощью изменения постоянного магнитного поля.

На рис. 3.36 изображена одна из простых схем радиоспектроскопа для наблюдения ЭПР - радиоспектроскопа с волноводным мостом. Он содержит стабильный источник ВЧ-излучения - клистрон, настраиваемый объемный резонатор с исследуемым образцом, и измерительную систему для детектирования, усиления и индикации сигнала. Энергия клистрона наполовину идет в плечо резонатора, содержащего исследуемый образец, и наполовину в другое плечо к согласованной нагрузке. При настройке винтом можно сбалансировать мост. Если потом с помощью модуляционных катушек менять постоянное магнитное поле, то при резонансе резко возрастает поглощение энергии образцом, что приводит к разбалансировке моста. Тогда после усиления сигнала осциллограф прописывает резонансную кривую.

Метод ЭПР обладает высокой чувствительностью. Он позволяет измерять времена релаксации, ядерные магнитные моменты, проводить количественный анализ любых парамагнитных веществ вплоть до 10 -12 г вещества, определять структуру химических соединений.

электронные конфигурации, измерять слабые напряженности магнитного поля до 79,6 А/м и т. д.

Покажем, как можно рассчитать мощность излучения, поглощаемого парамагнитным веществом (3.107). Представим переменное магнитное поле, вращающееся по часовой стрелке (в направлении прецессии магнитного момента) в комплексной форме:

B(t}= = 2?,coso)/-/"#, sinw/ = 2? u +iB ly . Можно также ввести

комплексный вектор намагничивания /(/)= / и +И { 9 который связан с комплексным вектором переменного магнитного поля соотношением / = х(о>)Я, где x(w) - комплексная магнитная восприимчивость. Такое соотношение вводится аналогично статическому случаю, когда магнитное поле B Q постоянно: / 0 = х 0 ? 0 , где %о~ ста " тическая магнитная восприимчивость. Из уравнений Блоха (3.106) получаем

В установившемся режиме имеем: - = -/о)/, -- = 0. Тогда из

системы (3.110) следует система уравнений:

Решение этой системы:

Среднюю за период поля поглощаемую мощность можно вычислить по формуле


Отсюда следует, что поглощаемая мощность определяется мнимой частью комплексной магнитной восприимчивости.

С помощью метода магнитного резонанса были получены многие фундаментальные результаты. В частности, был измерен аномальный магнитный момент электрона. Оказалось, что спиновый магнитный момент электрона не равен точно одному магнетону Бора, т. е. для электрона гиромагнитное отношение g e ^2. Об этом уже говорилось в §2.7. Был измерен также магнитный момент нейтрона и т. д. На основе этого метода был создан атомно-лучевой стандарт частоты и времени - атомихрон с использованием пучка атомов цезия Cs 133

1. В свободном ионе Си 2+ не хватает одного электрона в З^-обо- лочке. Определить частоту парамагнитного резонанса в магнитном поле 421,88-10 3 А/м.

Решение. Основное состояние - /)-состояние (L = 2) со спином 5= 1/2. По правилу Хунда число /= L + 5= 5/2. В отсутствие магнитного поля этот уровень не расщеплен с кратностью вырождения (25+ 1)(2Z.+ 1)= 10. В постоянном магнитном поле уровень расщепляется на 2/+ 1 =6 подуровней. Фактор Ланде g=6/5. Частота парамагнитного резонанса определяется по формуле (3.101).

  • 2.3. Изучение кинетики полимеризации
  • 2.4. Определение и изучение межмолекулярных и внутримолекулярных водородных связей
  • 2.5. Определение степени кристалличности полимеров
  • 2.7. Заключение
  • Глава 3. Метод ядерного магнитного резонанса
  • 3.1. Основы метода
  • 3.2. Области применения ЯМР-спектроскопии в макромолекулярной химии
  • 3.3. Примеры применения метода ЯМР
  • Определение структуры вещества
  • Определение молекулярной массы полимера
  • Изучение процессов комплексообразования
  • О возможности определения стереорегулярности полимеров
  • Определение состава сополимера
  • Корреляция химических сдвигов винильных соединений с их параметрами и индексами реакционной способности
  • 3.4. Заключение
  • Глава 4. Рентгеновская спектроскопия
  • 4.1. Общие положения
  • 4.2. Примеры применения рентгеноструктурного анализа
  • 4.3. Определение степени кристалличности полимеров
  • 4.4. Заключение
  • Глава 5. Полярографический метод в химии полимеров
  • 5.1. Общие положения
  • 5.2. Области применения полярографии в химии полимеров
  • 5.3. Качественная идентификация полимеров
  • 5.4. Контроль синтеза макромолекул
  • 5.7. Заключение
  • Глава 6. Спектроскопия электронного парамагнитного резонанса
  • 6.1. Краткие основы метода
  • 6.3. Исследование структуры радикалов и молекулярных движений
  • 6.4. Исследование химических процессов в полимерах
  • 3.5. Заключение
  • Глава 7. Флуоресценция полимеров
  • 7.1. Суть метода
  • 7.2. Области применения флуоресценции
  • 7.3. Флуоресценция полимеров
  • 7.4. Различение полимеров и добавок
  • 7.5. Определение молекулярной массы
  • 7.6. Заключение
  • Глава 8. Масс-спектрометрия полимеров
  • 8.1. Общие положения
  • 8.3. Масс-спектры карбазолов
  • 8.4. Заключение
  • Глава 9. Диэлектрические методы исследования строения полимеров
  • 9.1. Термины и их определение
  • 9.2. Зависимость диэлектрических свойств от строения полимерных материалов
  • 9.3. Диэлектрические свойства поливинилкарбазолов
  • 9.4. Электрофотографический метод
  • 9.5. Фоточувствительные свойства поливинилкарбазола
  • 9.6. Заключение
  • Глава 10. Хроматографические методы в химии полимеров
  • 10.1. Общие положения
  • 10.2. Гель-проникающая хроматография.
  • 10.3. Тонкослойная хроматография полимеров
  • 10.4. Пиролитическая газовая хроматография
  • 10.5. Заключение
  • Глава 11. Определение некоторых параметров полимеризации
  • 11.1. Методы определения скорости полимеризации
  • 11.2. Расчет состава сополимеров
  • 11.3. Заключение
  • Глава 12. Методы термического анализа полимерных материалов
  • 12.1. Термогравиметрический метод
  • 12.3. Заключение
  • Глава 13. Методы определения физических состояний полимеров
  • 13.1. Термомеханический метод
  • 13.2. Частотно-температурный метод определения физических состояний аморфных линейных полимеров
  • 13.4. Заключение
  • Глава 14. Методы измерения внутреннего трения
  • 14.1. Способы измерения внутреннего трения
  • 14.2. Терморелаксационные кривые полимеров
  • 14.3. Заключение
  • Глава 15. Методы измерения акустических характеристик полимеров
  • 15.1. Методы измерения акустических характеристик
  • 15.2. Области применения
  • 15.3. Заключение
  • Глава 16. Методы определения вязкости расплавов и растворов полимеров
  • 16.1. Капиллярная вискозиметрия
  • 16.2. Ротационная вискозиметрия
  • 16.3. Измерения вязкости разбавленных растворов полимеров
  • 16.4. Заключение
  • Глава 17. Методы определения молекулярной массы и молекулярно-массового распределения полимеров
  • 17.1. Методы определения молекулярных масс полимеров
  • 17.2. Определение молекулярной массы по концевым группам
  • 17.3. Методы определения молекулярно-массового распределения полимеров
  • 17.4.Области применения ММР в исследовательской практике
  • 17.5. Влияние конверсии мономера на ММР
  • 17.6. Температура полимеризации и ее связь с молекулярной массой.
  • 17.7. Вязкость расплавов полимеров
  • 17.8. Заключение
  • Глава 18. Механические свойства полимерных материалов и методы их определения
  • 18.1. Области применения механических свойств
  • 18.2. Методы определения важнейших механических показателей полимерных материалов
  • 18.3. Заключение
  • Список литературы
  • Глава 6. Спектроскопия электронного парамагнитного резонанса

    6.1. Краткие основы метода

    Спектроскопия электронного парамагнитного резонанса(ЭПР) – это явление резонансного поглощения энергии электромагнитных волн парамагнитными частицами, помещенными в постоянное магнитное поле. Это поглощение возникает вследствие того, что неспаренные

    электроны парамагнитных частиц ориентируются в постоянном магнитном поле так, что их собственный момент количества движения (спин) направлен либо по полю, либо против поля. Поглощение представляет собой функцию неспаренных электронов, содержащихся в

    исследуемом

    Вследствие

    поглощения

    высокочастотного поля образцом появляется сигнал ЭПР. Спектр ЭПР

    представляет собой зависимость поглощения микроволновой энергии от

    внешнего

    магнитного

    Поглощениепля

    сверхвысокочастотного магнитного поля регистрируется либо на экране

    осциллографа, либо на самописце радиоспектрометра.

    рис. 6.1 приведена

    ЭПР-спектре

    гипотетического соединения.

    радикала. Для этих целей составлены атласы спектров ЭПР различных соединений. Для интерпретации спектров ЭПР важны следующие параметры линий: форма, интенсивность, положение и расщепление.

    Следует заметить, что приборы сразу же выдают первую производную кривой поглощения энергии (рис. 6.1).

    Интенсивность линии ЭПР-спектра – это площадь под его кривой. Она пропорциональна числу неспаренных электронов в образце. За положение линии в спектре ЭПР принимается точка, в которой первая

    ~O -CH -O ~

    Рис. 6.2. Схема появления сверхтонкого расщепления в ЭПР-спектре срединного радикала полиформальдегида

    когда система

    содержит ядра с магнитным моментом,

    например протон (Н1 ), вблизи неспаренного электрона, на магнитный

    момент электрона влияет ориентация магнитного момента. ядраВ

    результате такого взаимодействия каждый магнитный энергетический

    электрона

    расщепляется

    ПодуровнейЭто

    взаимодействие электрона и магнитного ядра называется сверхтонким

    взаимодействием (СТВ), а

    расщепление

    энергетических

    уровней–

    сверхтонким расщеплением (рис. 6.2).

    6.2. Области применения ЭПР-спектроскопии в

    макромолекулярной химии

    ЭПР-спектроскопия

    макромолекулярной

    используется для изучения свободных радикалов, образующихся в следующих процессах:

    · полимеризации (фото-, радиационное инициирование и т. д.);

    · деструкции полимеров;

    · окисление полимеров;

    · расщепление макромолекул при механодеструкции.

    6.3. Исследование структуры радикалов и молекулярных движений

    Энергия СТВ неспаренного электрона с ядрами складывается из двух частей – изотропной и анизотропной. Так, изотропная часть определяет энергию дипольного взаимодействия электрона с ядром, и она зависит от угла между осьюр -орбитали неспаренного электрона и направлением постоянного магнитного поля. Анизотропное СТВ проявляется в спектре ЭПР радикалов в твердых телах, где ориентация радикалов жестко фиксированы. В жидкостях анизотропное СТВ отсутствует.

    полиэтилена -CH 2 - CH - CH 2 - CH - (рис. 6.3).

    В поликристаллическом полимере спектр состоит из шести линий

    (рис. 6.3, а ). Это

    обусловлено тем, что

    взаимодействие

    неспаренного

    электрона

    осуществляется

    магнитноэквивалентными

    протонами,

    константы

    примерно одинаковы.

    Рис. 6.3. Спектры ЭПР срединного радикала полиэтилена в поликристалле (а ) и в монокристалле при ориентации оси макромолекулы вдоль поля (б ) и перпендикулярно полю (в )

    Однако спектр полиэтилена ориентированного, в котором зигзаг цепи полимера расположен вдоль направления поля, уже имеет пять линий (рис. 6.3, б ). Этот ЭПР-спектр обусловлен взаимодействием неспаренного электрона только с четырьмя протонами. Взаимодействие с α-водородом в этой ориентации мало и не проявляется в спектре.

    Если теперь повернуть поле и направить его вдольр -орбитали, перпендикулярно зигзагу цепи, то появляются 10 линий (рис. 6.3, в ). Удвоение числа линий связано с расщеплением на α-протоне, которое при этой ориентации достаточно велико.

    Рис. 6.4. Спектры ЭПР срединного ~CH2 - C H - CH2 ~ (а ) и концевого

    ~CH2 - C H2 (б ) макрорадикалов полиэтилена

    В полиэтилене цепи имеют плоскую конформацию, и поэтому в срединном радикале все пять протонов, ближайших к реакционному центру радикала, магнитно эквивалентны. Спектр ЭПР такого радикала (рис. 6.4, а ) состоит из шести линий, распределение интенсивностей которых описывается биномиальным законом. Спектр ЭПР концевого радикала состоит из пяти линий (рис. 6.4, б ).

    6.4. Исследование химических процессов в полимерах

    Метод ЭПР используется для обнаружения, радикалов исследования их превращений и радикальных реакций в полимерах.

    Для исследования химических процессов важно не только идентифицировать радикалы, но и измерить их концентрации. Прямое определение свободных радикалов с помощью ЭПР в ходе свободнорадикальной полимеризации в настоящее время не совсем успешно. Это обусловлено тем, что при обычных экспериментальных скоростях полимеризации концентрация радикалов очень мала.

    Методом ЭПР идентифицированы растущие макрорадикалы в жидкой и твердой фазах, определены их концентрации, найдены константы скорости роста и обрыва цепей.

    ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС (ЭПР, электронный спиновый резонанс), явление резонансного поглощения электромагн. излучения парамагн. частицами, помещенными в постоянное магн. поле; один из методов радиоспектроскопии . Используется для изучения систем с ненулевым электронным спиновым магн. моментом (т. е. обладающих одним или неск. неспаренными электронами ): атомов , своб. радикалов в газовой, жидкой и твердой фазах, точечных дефектов в твердых телах , систем в триплетном состоянии, ионов переходных металлов .

    Физика явления. В отсутствие постоянного магн. поля Н магн. моменты неспаренных электронов направлены произвольно, состояние системы таких частиц вырождено по энергии. При наложении поля Н проекции магн. моментов на направление поля принимают определенные значения и вырождение снимается (см. Зеемана эффект ), т. е. происходит расщепление уровня энергии электронов E 0 . Расстояние между возникшими подуровнями зависит от напряженности поля Н и равно (рис. 1), где g - фактор спектроскопич. расщепления (см. ниже), - магнетон Бора , равный 9,274 x 10 -24 Дж/Тл; в системе единиц СИ вместо Н следует использовать магн. индукцию где - магн. проницаемость своб. пространства, равная 1,257 x 10 -6 Гн/м. Распределение электронов по подуровням подчиняется закону Больцмана, согласно к-рому отношение заселенностей подуровней определяется выражением где k - постоянная Больцмана , Т - абс. т-ра. Если на образец подействовать переменным магн. полем с частотой v, такой, что (h - постоянная Планка ), и направленным перпендикулярно H, то индуцируются переходы между соседними подуровнями, причем переходы с поглощением и испусканием кванта hv равновероятны. Т.к. на нижнем уровне число электронов больше в соответствии с распределением Больцмана, то преим. будет происходить резонансное поглощение энергии переменного магн. поля (его магн. составляющей).

    Рис. 1. Расщепление энергетического уровня электрона в постоянном магнитном поле. Е 0 - уровень в отсутствие поля, Е 1 и Е 2 - уровни, возникающие в присутствии поля Н.

    Для непрерывного наблюдения поглощения энергии условия резонанса недостаточно, т.к. при воздействии электро-магн. излучения произойдет выравнивание заселенностей подуровней (эффект насыщения). Для поддержания больцманов-ского распределения заселенностей подуровней необходимы релаксационные процессы. Релаксационные переходы электронов из возбужденного состояния в основное реализуются при обмене энергией с окружающей средой (решеткой), к-рый осуществляется при индуцированных решеткой переходах между электронными подуровнями и определяется как спин-решеточная релаксация . Избыток энергии перераспределяется и между самими электронами - происходит спин-спиновая релаксация . Времена спин-решеточной релаксации T 1 и спин-спиновой релаксации Т 2 являются количеств. мерой скорости возврата спиновой системы в исходное состояние после воздействия электромагн. излучения. Зафиксированное регистрирующим устройством поглощение электромагн. энергии спиновой системой и представляет собой спектр ЭПР.

    Основные параметры спектров ЭПР - интенсивность, форма и ширина резонансной линии, g-фактор, константы тонкой и сверхтонкой (СТС) структуры. На практике обычно регистрируется 1-я, реже 2-я производные кривой поглощения, что позволяет повысить чувствительность и разрешение получаемой информации.
    Интенсивность линии определяется площадью под кривой поглощения (рис. 2, a), к-рая пропорциональна числу парамагн. частиц в образце. Оценку их абс. кол-ва осуществляют сравнением интенсивностей спектров исследуемого образца и эталона. При регистрации 1-й производной кривой поглощения (рис. 2,б) используют процедуру двойного интегрирования. В ряде случаев интегральную интенсивность можно приближенно оценить, пользуясь выражением , где S пл - площадь под кривой поглощения, I макс - интенсивность линии, - ширина линии. 1-я и особенно 2-я производные (рис. 2, в)весьма чувствительны к форме линии поглощения.
    Форма линии в спектре ЭПР сравнивается с лоренцевой и гауссовой формами линии, к-рые аналитически выражаются в виде: у= a/(1 + bх 2)(лоренцева линия), у = а ехр (-bx 2) (гауссова линия). Лоренцевы линии обычно наблюдаются в спектрах ЭПР жидких р-ров парамагн. частиц низкой концентрации . Если линия представляет собой суперпозицию мн. линий (неразрешенная СТС), то форме ее близка к гауссовой.

    Рис. 2 , а - кривая поглощения ЭПР, б - первая производная поглощения, в -вторая производная поглощения; - ширина линии на полувысоте кривой поглощения; и I макс - соответственно ширина и интенсивность линии между точками максимального наклона.
    Важным параметром является ширина линии к-рая связана с шириной линий на полувысоте соотношениями (лоренцева форма) и (гауссова форма). Реальные линии ЭПР, как правило, имеют промежуточную форму (в центре лоренцева, по краям - гауссова формы). Времена релаксации T 1 и Т 2 определяют ширину резонансной линии Величина T 1 характеризует время жизни электронного спина в возбужденном состоянии , в соответствии с принципом неопределенности при малых T 1 происходит уширениё линии ЭПР. В парамагн. ионах T 1 имеет порядок 10 -7 - 10 -9 с и определяет осн. канал релаксации , обусловливающий появление очень широких линий (вплоть до таких, к-рые невозможно наблюдать в обычных условиях). Использование гелиевых т-р позволяет наблюдать спектры ЭПР за счет увеличения T 1 . В своб. орг. радикалах T 1 достигает порядка секунд, поэтому главный вклад в ширину линии вносят релаксационные процессы, связанные со спин-спиновым взаимодействием и определяемые временем Т 2 , обратно пропорциональнымгде- гиромагн. отношение для электрона ,- параметр, зависящий от формы линии, в частности= 1 для лоренцевой линии и для гауссовой линии. Физ. смысл Т 2 заключается в том, что каждый электронный спин в системе создает локальные поля в местах нахождения др. электронов , модулируя резонансное значение поля H и приводя к уширению линии.
    g-Фактор формально определяется как фактор спектроскопич. расщепления Ланде, равный

    где L, S, J - квантовые числа соотв. орбитального, спинового и полного моментов кол-ва движения. В случае чисто спинового магнетизма L= 0 (ситуация своб. электрона ) g = 2,0023. Отклонение от этой величины свидетельствует о примеси орбитального магнетизма (спин-орбитальное взаимодействие ), приводящего к изменению величины резонансного поля. Ценную информацию величина g-фактора дает при анализе спектров ЭПР парамагн. ионов с сильным спин-орбитальным взаимодействием , т. к. она весьма чувствительна к лигандному окружению иона , к-poe формирует кристаллич. поле (см. Кристаллического поля теория ). Для ионов g-фактор определяется в виде где - константа спин-орбитального взаимодействия (или спин-орбитальной связи),-т. наз. расщепление в поле лигандов . Для орг. своб. радикалов величина очень велика, мала и отрицательна, поэтому для этих систем g-фактор близок к таковому для своб. электрона и изменяется в пределах третьего знака после запятой.
    Магнитные взаимод. в спиновых системах в общем случае анизотропны, что определяется анизотропией волновых ф-ций (орбиталей ) неспаренного электрона за исключением систем с неспаренным электроном в s-состоянии. Резонансное значение магн. поля и величина g-фактора зависят от относит. ориентации магн. поля и кристаллографич. (или молекулярных) осей. В жидкой фазе анизотропные взаимод. усредняются, приводя к изотропному (усредненному) значению g-фактора. В отсутствие усреднения (твердая фаза) в зависимости от структуры и хим. окружения спиновой системы, реализуется цилиндрич. (осевая) или более низкая симметрия . В случае цилиндрич. симметрии различают и причем - величина при поле Н, параллельном оси симметрии z,- величина при H, перпендикулярном оси z.
    Тонкая структура возникает в спектрах ЭПР парамагн. ионов , содержащих более одного неспаренного электрона (S> 1/2). В частности дня иона с S= 3 / 2 при наложении постоянного магн. поля образуются 2S + 1 = 4 подуровня, расстояния между к-рыми для своб. иона одинаковы, и при поглощении кванта должен наблюдаться один резонансный пик. В ионных кристаллах за счет неоднородности кристаллич. поля интервалы между подуровнями спиновой системы оказываются разными. В результате этого поглощение электромагн. излучения происходит при разл. значениях поля Я, что приводит к появлению в спектре трех резонансных линий.
    Сверхтонкая структура. Наиб. ценную информацию дает анализ СТС спектров ЭПР, обусловленной взаимод. магн. момента неспаренного электрона с магн. моментами ядер. В простейшем случае атома водорода неспаренный электрон находится в поле Н и локальном поле, созданном ядерным спином протона (I=1/2); при этом имеются две возможные ориентации ядерных спинов относительно поля H: в направлении этого поля и в противоположном, что приводит к расщеплению каждого зеемановского уровня на два (рис. 3). Т. обр., вместо одной линии резонансного поглощения при фиксированной частоте возникают две линии.

    Рис. 3. Энергетические уровни атома водорода в постоянном магнитном поле. Вертикальная пунктирная стрелка показывает переход, к-рый наблюдался бы в отсутствие СТВ. Сплошные вертикальные стрелки соответствуют двум переходам сверхтонкой структуры. В спектре ЭПР (ниже схемы) расстояние между линиями - константа СТВ с ядром протона . M s и М I - соответственно проекции спинов электрона и протона , связанные с их магнитными моментами .
    Расстояние между ними наз. константой сверхтонкого взаимодействия (СТВ); для атома водорода а н = 5,12 x 10 -2 Тл. В общем виде при наличии СТВ неспаренного электрона с ядром, обладающим спином I, линия поглощения ЭПР расщепляется на (21+ 1) компонент СТС равной интенсивности. В случае СТВ с и эквивалентными ядрами в спектре возникают n + 1 эквидистантно расположенных линий с отношением интенсивностей, пропорциональным коэффициентам биномиального разложения (1 + x) n . Мультиплетность и интенсивность линий определяется ориентацией ядерных спинов в каждом конкретном случае, что видно на примере спектра ЭПР метильного радикала (рис. 4). Следует подчеркнуть, что каждая линия спектра отвечает совокупности частиц, имеющих одну и ту же комбинацию ядерных спинов , создающих одно и то же локальное магн. поле, а весь спектр -это статистическое среднее по всему ансамблю спиновой системы.
    Различают два типа СТВ: анизотропное, обусловленное диполь-дипольным взаимод. неспаренного электрона и ядра, и изотропное (контактное), возникающее при ненулевой спиновой плотности неспаренного электрона в точке ядра. Анизотропное взаимод. зависит от угла между направлением поля H и линией, соединяющей электрон и ядро; его величина определяется ф-лой

    где- компонента магн. момента ядра вдоль поля H, r -расстояние между электроном и ядром. Анизотропное СТВ проявляется в твердой и вязкой средах при беспорядочной ориентации парамагн. частиц в виде уширения компонент СТС и изменения их формы. В маловязких средах это взаимод. усредняется до нуля в результате быстрого вращения частиц и остается только изотропное (контактное) СТВ, определяемое выражением где- ядерный магн. момент, - спиновая плотность в точке ядра, к-рая не обращается в нуль только для электронов в состоянии, т. е. для электронов на s-орбитали или на соответствующей молекулярной орбитали. В таблице приведены рассчитанные значения макс. контактного СТВ для s-электронов нек-рых атомов , ядра к-рых обладают ненулевым магн. моментом.

    Рис. 4. Уровни сверхтонкой структуры и ориентации ядерных спинов для трех эквивалентных ядер со спином V, (протонов ) в переменном магнитном поле. Интенсивность линий в спектре ЭПР отражает вырождение по ориентациям ядерных спинов (показаны справа).

    СВОЙСТВА АТОМОВ С МАГНИТНЫМИ ЯДРАМИ, КОНСТАНТЫ СТВ а НЕСПАРЕННОГО ЭЛЕКТРОНА С ЯДРОМ

    Атом

    Массовое число

    Ядерный спин

    В-электронных системах (большинство орг. своб. радикалов) спиновая плотность в точке ядра равна нулю (узловая точка р-орбитали) и реализуются два механизма возникновения СТВ (спинового переноса): конфигурационное взаимод. и эффект сверхсопряжения. Механизм конфигурационного взаимод. иллюстрируется рассмотрением СН-фрагмента (рис. 5). Когда на р-орбитали появляется неспаренный электрон , его магн. поле взаимод. с парой электронов -связи С - Н так, что происходит их частичное распаривание (спиновая поляризация ), в результате чего на протоне появляется отрицат. спиновая плотность , поскольку энергии взаимод. спинов и различны. Состояние, указанное на рис. 5, а, более устойчиво, т. к. для углеродного атома , несущего неспаренный электрон , в соответствии с правилом Хунда реализуется макс. мультиплетность . Для систем этого типа существует связь между константой СТВ с протоном и спиновой плотностью на соответствующем углеродном атоме , определяемая соотношением Мак-Коннела: где Q = -28 x 10 -4 Тл,- спиновая плотность на атоме углерода . Спиновый перенос по механизму конфигурационного взаимод. реализуется для ароматич. протонов и-протонов в орг. своб. радикалах.

    Рис. 5. Возможные спиновые конфигурации для-орбитали, связывающей атом водорода во фрагменте С - Н, и р-орбитали атома углерода со спином а - спины на связывающей-орбитали и р-орбитали атома углерода параллельны, б - те же спины антипараллельны.

    Эффект сверхсопряжения заключается в непосредственном перекрывании орбиталей неспаренного электрона и маг. ядер. В частности, в алкильньтх радикалах СТВ по этому механизму возникает на ядрах-протонов. Напр., в этильном радикале на-протонах СТВ определяется конфигурационным взаимод., а на-протонах - сверхсопряжением. Эквивалентность СТВ с тремя протонами метильной группы в рассматриваемом случае обусловлена быстрым вращением группы СН 3 относительно связи С - С. В отсутствие своб. вращения (или в случае затрудненного вращения), что реализуется в жидкой фазе для мн. систем с разветвленными алкильньтми заместителями или в монокристаллич. образцах, константа СТВ с-протонами определяется выражением , где- двугранный угол между 2р z -орбиталью-углеродного атома и связью СН, В 0 4 x 10 -4 Тл определяет вклад спиновой поляризации по ядерному остову (конфигурационное взаимод.), B 2 45 x 10 -4 Тл. В пределе быстрого вращения а н = 2,65 x 10- 3 Тл.
    В спектроскопии ЭПР триплетных состояний (S=1) помимо электрон-ядерных взаимодействий (СТВ) необходимо учитывать взаимодействие неспаренных электронов друг с другом. Оно определяется диполь-дипольным взаимодействием , усредняемым до нуля в жидкой фазе и описываемым параметрами нулевого расщепления D и E, зависящими от расстояния между неспасенными электронами (см. Радикальные пары ), а также обменным взаимодействием (изотропным), обусловленным непосредственным перекрыванием орбиталей неспаренных электронов (спиновый обмен), к-рое описывается обменным интегралом J обм. Для бирадикалов , в к-рых каждый из радикальных центров имеет одно магн. ядро с константой СТВ на этом ядре а, в случае быстрого (сильного) обмена J обм а, и каждый неспаренный электрон бирадикальной системы взаимод. с магн. ядрами обоих радикальных центров. При слабом обмене (J обм а)регистрируются спектры ЭПР каждого радикального центра независимо, т.е. фиксируется "монорадикальная" картина. Зависимость J обм от т-ры и р-рителя позволяет получить динамич. характеристики бирадикальной системы (частоту и энергетич. барьер спинового обмена).

    Техника эксперимента. В спектроскопии ЭПР используют радиоспектрометры, принципиальная блок-схема к-рых представлена на рис. 6. В серийных приборах частота электромагн. излучения задается постоянной, а условие резонанса достигается путем изменения напряженности магн. поля. Большинство спектрометров работает на частоте v 9000 МГц, длина волны 3,2 см, магн. индукция 0,3 Тл. Электромагн. излучение сверхвысокой частоты (СВЧ) от источника К по волноводам В поступает в объемный резонатор Р, содержащий исследуемый образец и помещенный между полюсами электромагнита NS.

    Рис. 6. Блок-схема спектрометра ЭПР. К - источник СВЧ излучения, В -волноводы, Р - объемный резонатор, Д - детектор СВЧ излучения, У - усилитель, NS - электромагнит, П - регистрирующее устройство.

    В условиях резонанса СВЧ излучение поглощается спиновой системой. Модулированное поглощением СВЧ излучение по волноводу (В) поступает на детектор Д. После детектирования сигнал усиливается на усилителе У и подается на регистрирующее устройство П. В этих условиях регистрируется и интегральная линия поглощения ЭПР. Для повышения чувствительности и разрешения спектрометров ЭПР используют высокочастотную (ВЧ) модуляцию (обычно 100 кГц) внешнего магн. поля, осуществляемую с помощью модуляционных катушек. ВЧ модуляция и спец. фазочувст-вит. детектирование преобразуют сигнал ЭПР в первую производную кривой поглощения, в виде к-рой и происходит регистрация спектров ЭПР в большинстве серийных спектрометров. В нек-рых спец. случаях используют спектрометры, работающие в диапазоне длин волн 8 мм и 2 мм, что позволяет существенно улучшить разрешение по g-фактору (своб. радикалы, парамагн. ионы ).
    Чувствительность совр. спектрометров достигает 10 -9 М (10 11 частиц в образце) при оптимальных условиях регистрации и ширине линии 10 -4 Тл. Важной характеристикой является временная шкала метода, определяемая частотой СВЧ излучения, подающегося на образец (v = 10 -10 с), что позволяет исследовать динамику в спиновых системах в диапазоне частот 10 6 -10 10 c -1 .

    Применение. Методом ЭПР можно определять концентрацию и идентифицировать парамагн. частицы в любом агрегатном состоянии , что незаменимо для исследования кинетики и механизма процессов, происходящих с их участием. Спектроскопия ЭПР применяется в радиационной химии , фотохимии , катализе , в изучении процессов окисления и горения , строения и реакционной способности орг. своб. радикалов и ион-радикалов , полимерных систем с сопряженными связями. Методом ЭПР решается широкий круг структурно-динамич. задач. Детальное исследование спектров ЭПР парамагн. ионов d- и f-элементов позволяет определить валентное состояние иона , найти симметрию кристаллич. поля, количественно изучать кинетику и термодинамику многоступенчатых процессов комплексообразования ионов . Динамич. эффекты в спектрах ЭПР, проявляющиеся в специфич. уширении отдельных компонент СТС, обусловленном модуляцией величины констант СТВ за счет внутри- и межмол. хим. р-ций, позволяют количественно исследовать эти р-ции, напр. электронный обмен между ион-радикалами и исходными молекулами типа А -* + А А + А -* , лигандный обмен типа LR * + L"L"R * +L, внутримол. процессы вращения отдельных фрагментов в радикалах, конформац. вырожденные переходы, внутримол. процессы перемещения атомов или групп атомов в радикалах и т.д.

    Модификации метода. В двойном электрон-ядерном резонансе (ДЭЯР) образец подвергают одновременному воздействию СВЧ излучения и переменного магн. поля в области частот ЯМР . При этом СВЧ излучение и постоянное магн. поле поддерживаются в условиях резонанса, а частота ЯМР , т. е. переменное магн. поле, обеспечивающее реализацию ЯМР при данном постоянном магн. поле, меняется в диапазоне, отвечающем величинам СТВ конкретной спиновой системы. При выполнении условия ядерного резонанса происходит изменение интенсивности сигнала ЭПР. Спектр ДЭЯР, т. обр., представляет собой график изменения интенсивности сигнала ЭПР в зависимости от изменения частоты ЯМР . Метод значительно упрощает спектры исследуемых объектов. Напр., если спектр ЭПР радикала (С 6 Н 5) 3 С * содержит 196 линий СТС, то в спектре ДЭЯР регистрируется три пары линий, отвечающих трем наборам протонных констант СТВ для этого радикала (орто-, мета-, пара-протоны трех фенильных колец).
    В двойном электрон-электронном резонансе (ДЭЭР) измеряют уменьшение интенсивности одного сверхтонкого перехода при одновременном насыщении (за счет большой мощности соответствующей СВЧ частоты) второго сверхтонкого перехода, т. е. линий СТС, напр., в спектрах, изображенных на рис. 4. Обе модификации ЭПР дают очень точные значения констант СТВ.
    Метод электронного спинового эха (ЭСЭ) заключается в воздействии на спиновую систему коротких и мощных СВЧ импульсов в условиях ЭПР и наблюдение релаксации возбужденной т. обр. системы в исходное состояние. Помимо непосредственного измерения времен релаксации спиновой системы метод позволяет получать информацию о скорости медленных движений своб. радикалов.
    Оптически детектируемый ЭПР (ОД ЭПР) дает информацию о своб. радикааах в радикальных парах , возникающих при радиационном или УФ воздействии в кристаллах и жидкой фазе. Спиновое состояние радикальной пары (синглетное или триплетное) можно изменить вынужденным путем, вызывая спиновые переходы партнеров пары под действием резонансного микроволнового поля во внешнем магн. поле. Спектр ЭПР при этом регистрируется путем изменения выхода продуктов из радикальной пары любым аналит. методом. Наиб. чувствительность получается при использовании оптич. методов, особенно по измерению люминесценции . При изменении напряженности магн. поля записываемый спектр люминесценции в точности повторяет спектр ЭПР радикалов, возникающих в радикальных парах . Чувствительность метода составляет 10-10 2 частиц в образце, что позволяет получать сведения о спектрах ЭПР, строении и превращениях короткоживущих радикалов, время жизни к-рых составляет порядка 10 -8 с.
    Явление ЭПР открыто Е. К. Завойским в 1944.

    Лит.: Вертц Дж., Болтон Дж., Теория п практические приложения метода ЭПР, М., 1975; Landolt-Bornstein, Numerical data and functional relationships in science and technology. New series, В., v. II/1, 1965-66, II/2, 1966, II/8, 1976-80,II/10, 1979, II/11, 1981, II/12, 1984, II/17, 1987-89.