Самый горячий объект во вселенной. Туманность Бумеранг: холоднее пустоты самого космоса. Спектры и температура


Необычный объект обнаружили при помощи новейшего телескопа ALMA (Atacama Large Millimeter/submillimeter Array), работающий в высокогорной чилийской пустыне Атакама в Южной Америке. Претендент на звание самого холодного объекта имеет температуру всего 1 градус Кельвина или минус 272,15 градусов по шкале Цельсия.

nasa.gov

Туманность Бумеранга всего на один градус выше абсолютного нуля — минимально возможной температуры, при которой замерзает самый легкий химический элемент — водород. Специалисты, работающие с ALMA, говорят, что данная туманность едва видна на фоне микроволнового фона Вселенной, представляющего собой остаточное излучение от Большого Взрыва, произошедшего 13,7 млрд лет назад. Считается, что микроволновой фон обладает минимальной из возможных температур и на его фоне все остальные объекты во Вселенной теплее, следовательно, они обладают тепловым излучением и видны в инфракрасном спектре наблюдений.

Однако Туманность Бумеранга тут практически не видна, телескоп передал лишь бумерангообразные очертания этой туманности, что указывает на крайне низкую температуру данного объекта. Ученые говорят, что низкая температура туманности — это лишь одна сторона медали. Другая — в том, что эта туманность обладает небольшим оптическим свечением, что невозможно объяснить современными научными знаниями. Впрочем, ученые говорят, что современной физике известно очень мало о сверххолодных космических объектах и многие данные здесь либо не полны, либо основаны на неподтвержденной теории.

Сама по себе Туманность Бумеранга представляет собой объект, удаленный от нас на 5000 световых лет в созвездии Центавра. Это достаточно молодой объект, что добавляет интриги, так как неясно, как в современной части Вселенной мог возникнуть столь холодный объект. Возможно, что в центре туманности есть несколько небольших или умирающих звезд, которые дают ему светимость, но пока это не подтверждено.

Ученые говорят, что туманность - это пре-планетарный объект, то есть тут нет звездных систем, подобных нашей, следовательно, и планет тут тоже нет. Вероятно, что столь низкая температура туманности обусловлена как раз работой тех самых звезд. Здесь создается эффект, похожий на тот, что существует в холодильниках. Звезды просто забирают все тепло из туманности, оставляя ее в виде гигантской морозильной камеры. При этом, свет звезд пронзает всю туманность и газо-пылевые облака в ней начинают светиться.

Отметим, что Туманность Бумеранга была открыта еще в 2003 году при помощи телескопа Хаббл, но этот телескоп не имеет системы температурного мониторинга, поэтому температура Туманности до сих пор была не выясненной. За десять лет исследований ученые, которые сначала определили форму газового облака в созвездии Центавра как галстук-бабочку или песочные часы, теперь сравнивают его с призраком. Специалисты, рассматривая Бумеранг, заметили, что туманность окутывает вытянутая оболочка, которая по форме напоминает привидение.

Туманность Бумеранг. Снимок телескопа «Хаббл»
Фото: NASA

Ученых давно интересовал вопрос: насколько холодно в космосе. Как правило, температура там не ниже температуры реликтового излучения, которое пронизывает всю Вселенную. Однако, в те местах, где умирают звезды, температура может опускаться гораздо ниже. Именно такое место удалось отыскать ученым в планетарной туманности Бумеранг.

Средние показатели температуры на Земле, планете, которая находится от Солнца на расстоянии более 149 миллионов километров, держатся в пределах 300 К. Стоит отметить, что планета еще обогревается горячим ядром, а кроме того, в случае отсутствия атмосферы температурные показатели были бы еще на 50 К меньше. Чем дальше находится объект от ближайшей звезды, тем там холоднее. К примеру, на Плутоне средняя температура составляет всего 44 К. При таких показателях даже азот замерзает, а значит, от земной атмосферы практически ничего бы не осталось, ведь в ней 80 процентов азота. За пределами Солнечной системы, в межзвездном пространстве, значительно холоднее.

По галактике плавают молекулярные облака, вещество в которых имеет температуру примерно 10-20 К, что близко к абсолютному нолю. В галактике более низких температур больше нет, поскольку остальные ее части в той или иной мере согреты звездным излучением.

Однако в межгалактическом пространстве температура еще ниже, чем в молекулярном облаке, которое находится далеко от источников излучения. Между собой Галактики разделяются миллионами световых лет пустоты, и единственным излучением, доходящим во все уголки космоса, является микроволновое реликтовое излучение, которое осталось от Большого Взрыва. За счет волн реликтового излучения температура в межгалактическом пространстве не опускается ниже 2,73 К. На первый взгляд может показаться, что холоднее просто быть не может, но на самом деле это далеко не так.

Если говорить более точно, то холоднее теоретически может быть. Для того, чтобы температурные показатели межгалактического пространства опустились ниже 2,73 К, необходимо дождаться, чтобы Вселенная немного расширилась. Это расширение происходит уже сейчас – Вселенная расширяется со скоростью порядка 770 километров в секунду на 3,26 миллионов световых лет. В настоящее время возраст Вселенной достигает 13,78 миллиардов лет, а когда ей станет в два раза больше, реликтовое излучение сможет удерживать температуру лишь на один градус выше абсолютного ноля.

И самое неожиданное известие от ученых: наиболее холодное место во Вселенной отыскать можно уже в данный момент, причем, не очень далеко от Земли – в туманности Бумеранг, расположившееся от нашей планеты на расстоянии всего 5 тысяч световых лет.

В центре данной туманности расположена умирающая звезда, бывшая в прошлом подобно Солнцу, желтым карликом. Подобно остальным звездам одного спектрального класса, она стала красным гигантом и закончила существование в системе, возникшей из белого карлика и препланетарной туманности, возникшей вокруг него.

Планетарной туманностью принято называть остатки периферийных участков красного гиганта, сброшенных звездой в тот период, когда ее центр сжался до размеров белого карлика. Но, перед тем, как стать планетарной туманностью, красный карлик на некоторое время становится препланетарной туманностью. В том случае, если в ней возникнут все необходимые условия, температурные показатели в туманности могут опуститься ниже самых низких температур во Вселенной. К подобным выводам пришел индийский астроном Равендра Сахай, причем, значительно раньше, чем его команда создала температурную карту туманности Бумеранг и убедилась, что там и правда очень холодно.

Туманность Бумеранг - самое холодное место во вселенной
Фото: ESA/NASA

Возникает препланетарная туманность в том случае, если в ядре звезды температура повышается, но в это же время периферийное вещество лишь начинает отделяться. Этот процесс происходит несколькими выбросами потоков плазмы, которые начинаются во внешнем слое звездного вещества. Эти потоки по космическим меркам существуют очень недолго – всего несколько тысяч лет. При условии, что плазма в потоке движется быстро (а в туманности Бумеранг это именно так), то потеря вещества звездой происходит с большой скоростью. Именно благодаря этой огромной скорости в туманности и возникают те области, в которых температурный показатель не превышает 0,5 К, что значительно ниже температуры в любом другом месте Вселенной.

А все потому, что тепловая энергия молекул переходит в кинетическую энергию движения, за счет чего воздух и остывает.

No related links found

Куда бы вы ни отправились во Вселенной, везде будут источники тепла. Чем дальше вы от них ото всех, тем холоднее. На расстоянии в 150 миллионов километров от Солнца Земля поддерживает скромную температуру в 26-27 градусов по Цельсию, которая была бы градусов на 50 холоднее, не будь у нас атмосферы. Еще дальше - и Солнце будет нагревать объекты все меньше и меньше. Плутон, к примеру, температурой в -229 градуса по Цельсию: достаточно холодный, чтобы жидкий азот замерз. Мы можем отправиться еще дальше, в межзвездное пространство, где ближайшие звезды будут в световых годах от нас.

Холодные молекулярные облака, которые бродят изолированно по всей галактике, еще холоднее, на несколько градусов выше абсолютного нуля. Поскольку звезды, сверхновые, космические лучи, звездные ветры и все остальное обеспечивают галактику энергией в целом, сложно найти что-то еще более холодное в Млечном Пути. Но если выйти в межгалактическое пространство, за миллионы световых лет от ближайших звезд, единственным, что будет поддерживать вас в тепле, будет послесвечение Большого Взрыва, космический микроволновый фон.

При температуре ниже 3 градусов по Цельсию выше абсолютного нуля эти едва обнаруживаемые фотоны являются единственным источником тепла. Поскольку каждое место во Вселенной постоянно бомбардируется этими инфракрасными, микроволновыми и радиофотонами, можно подумать, что 2,725 градуса Кельвина (-270,42 по Цельсию) - это самое холодное, что можно найти в природе. Чтобы испытать температуру холоднее, нужно подождать, пока Вселенная расширится еще больше, растянет длины волн этих фотонов и остынет до еще более низкой температуры. И это произойдет, конечно же, но не скоро. К этому моменту Вселенная станет в два раза старше - пройдет еще 13,8 миллиарда лет - и самая низкая температура едва ли будет превышать хотя бы один градус выше абсолютного нуля. Однако вы уже сейчас можете найти место, которое холоднее самых глубоких глубин межгалактического пространства.

Даже далеко ходить не придется. Это туманность Бумеранг, расположенная всего в 5000 световых годах от нас, в нашей собственной галактике. В 1980 году, когда ее впервые наблюдали в Австралии, она была похожа на двудольную асимметричную туманность, за что ее и прозвали «бумерангом». Последующие наблюдения показали, что эта туманность является в действительности препланетарной туманностью, промежуточным этапом в жизни умирающих звезд типа Солнца. Все подобные звезды эволюционируют в красных гигантов и заканчивают свою жизнь в виде планетарной туманности и белого карлика, когда внешние слои раздуваются, а центральное ядро сжимается. Но между красным гигантом и планетарной туманностью есть фаза препланетарной туманности.

Перед тем как внутренняя температура звезды повысится, но после того, как начнется выталкивание внешних слоев, мы получим препланетарную туманностью. Иногда в виде сферы, но чаще в виде двух биполярных джетов, она будет выбрасывать вещество из солнечной системы в межзвездную среду. Этот этап очень короткий: всего несколько тысяч лет. Пока что в такой фазе было обнаружено около десятка звезд. Но туманность Бумеранга особенная даже среди них. Ее газовые джеты выбрасываются в десять раз быстрее, чем обычно, двигаясь на скорости около 164 километров в секунду. Она теряет массу быстрее, чем положено: каждый год улетучивается материал на несколько Нептунов. В результате получается самое холодное место в известной Вселенной, и в некоторых частях туманности температура составляет около 0,5 градуса Кельвина: полградуса выше абсолютного нуля.

Все остальные планетарные и препланетарные туманности гораздо теплее, но почему так происходит - это объяснить очень просто. Попробуйте глубоко вдохнуть, задержать дыхание на три секунды и затем выпустить воздух. Можно проделать это двумя способами, удерживая руку на расстоянии 15 сантиметров от вашего рта.

  1. Можно выдохнуть широко разинутым ртом и почувствовать, как теплый воздух мягко ударяется о вашу руку.
  2. Можно вытянуть губы трубочкой и выдуть холодный воздух.

В обоих случаях воздух нагревается внутри вашего тела и остается такой же температуры прежде, чем проходит через ваши губы. Но если рот широко открыт, воздух выходит медленно и слегка нагревает руку. Если же он выходит через маленькое отверстие, воздух быстро расширяется и остывает.

Внешние слои звезды, которые породили туманность Бумеранг, находятся в таких же условиях:

  • много горячего вещества
  • которое быстро выбрасывается
  • из крошечной точки (а точнее, двух)
  • расширяется и остывает.

Но что особенно интересно, так это то, что туманность Бумеранг предсказали еще до того, как нашли. Астроном Ражвендра Сахай подсчитал, что препланетарная туманность при определенных условиях - что были описаны выше - действительно может достичь более низкой температуры, чем все другие места во Вселенной. Сахая затем вошел в состав команды в 1995 году, которая проделала важные длинноволновые наблюдения и определила температуру туманности Бумеранг. Теперь это самое холодное известное место во Вселенной.

А вы знали, что самая массивная звезда весит в 265 раз больше Солнца? Читайте пост и узнаете много интересного.

№10. Туманность Бумеранг – самое холодное место во Вселенной

Туманность Бумеранг расположена в созвездии Центавра на расстоянии 5000 световых лет от Земли. Температура туманности равна −272 °C, что и делает ее самым холодным известным местом во Вселенной.

Поток газа, идущий от центральной звезды Туманности Бумеранг, движется со скоростью 164 км/с и постоянно расширяется. Из-за такого скоростного расширения в туманности такая низкая температура. Туманность Бумеранг холоднее даже реликтового излучения от Большого Взрыва.

Кит Тейлор и Майк Скаррот назвали объект «Туманность Бумеранг» в 1980 году после наблюдения его с англо-австралийского телескопа в обсерватории Сайдинг-Спринг. Чувствительность прибора позволила зафиксировать лишь небольшую асимметрию в долях туманности, откуда появилось предположение об изогнутой, как у бумеранга, форме.

Туманность Бумеранг была подробно сфотографирована космическим телескопом «Хаббл» в 1998 году, после чего стало понятно, что туманность имеет форму галстка-бабочки, но это название уже было занято.

R136a1 находится на расстоянии 165 000 световых лет от Земли в туманности Тарантул в Большом Магеллановом Облаке. Этот голубой гипергигант является самой массивной звездой из всех известных науке. Также звезда является и одной из самых ярких, испуская света до 10 млн раз больше, чем Солнце.

Масса звезды составляет 265 масс Солнца, а масса при образовании - более 320.
R136a1 обнаружила команда астрономов из Университета Шеффилда под руководством Пола Кроутера 21 июня 2010 года.

До сих пор остаётся неясным вопрос происхождения подобных сверхмассивных звёзд: образовались ли они с такой массой изначально, либо они образовались из нескольких меньших звёзд.
На изображении слева направо: красный карлик, Солнце, голубой гигант, и R136a1.

№8. SDSS J0100+2802 – самый яркий квазар с самой древней черной дырой

SDSS J0100+2802 – квазар, расположенный в 12,8 млрд световых лет от Солнца. Примечателен он тем, что питающая его Чёрная дыра имеет массу в 12 млрд масс Солнца, это в 3000 раз больше черной дыры в центре нашей галактики.

Светимость квазара SDSS J0100+2802 превосходит солнечную в 42 триллиона раз. А Черная дыра является самой древней из известных. Объект образовался через 900 миллионов лет после предполагаемого Большого взрыва.

Квазар SDSS J0100+2802 открыли астрономы из китайской провинции Юньнань при помощи 2,4 м Лицзянского телескопа 29 декабря 2013 года.

№7. WASP-33 b (HD 15082 b) – самая горячая планета

Планета WASP-33 b является экзопланетой у белой звёзды главной последовательности HD 15082 в созвездии Андромеды. По диаметру немного больше Юпитера. В 2011 году предельно точно была измерена температура планеты - около 3200 °C, что делает её самой горячей известной экзопланетой.

№6. Туманность Ориона – самая яркая туманность

Туманность Ориона (также известная как Мессье 42, M 42 или NGC 1976) - самая яркая диффузная туманность. Ее хорошо видно на ночном небе невооружённым глазом, и ее видно почти в любой точке Земли. Туманность Ориона находится на расстоянии около 1344 световых лет от Земли и имеет 33 световых года в поперечнике.

Открыл эту одинокую планету Филипп Делорм с помощью мощного телескопа ESO. Главная особенность планеты в том, что она находится в космосе совсем одна. Для нас привычнее, что планеты вращаются вокруг звезды. Но CFBDSIR2149 не такая планета. Она одна, и ближайшая к ней звезда расположена слишком далеко, чтобы оказывать на планету гравитационное воздействие.

Подобные одинокие планеты и раньше находились учеными, но большое расстояние мешало их изучению. Изучение одинокой планеты позволит "больше узнать о том, как планеты могут быть выброшены из планетных систем".

№4. Круитни – астероид с идентичной Земле орбитой

Круитни – это околоземный астероид, движущийся в орбитальном резонансе с Землёй 1:1, пересекает при этом орбиты сразу трёх планет: Венеры, Земли и Марса. Его также называют квазиспутником Земли.

Круитни был обнаружен 10 октября 1986 года британским астрономом-любителем Дунканом Уалдроном с помощью телескопа Шмидта. Первое временное обозначение у Круитни было - 1986 TO. Орбита астероида была вычислена в 1997 году.

Благодаря орбитальному резонансу с Землёй, астероид пролетает свою орбиту в течение почти одного земного года (364 дня), то есть в любой момент времени Земля и Круитни находятся на том же расстоянии друг от друга, что и год назад.
Опасности столкновения этого астероида с Землёй не существует, по крайней мере, в течение ближайших нескольких миллионов лет.

№3. Глизе 436 b - планета из горячего льда

Глизе 436 b обнаружена американскими астрономами в 2004 году. Планета по размерам сопоставима с размерами Нептуна, масса Глизе 436 b равна 22 массам Земли.

В мае 2007 года бельгийские учёные под руководством Микаэля Жийон из Льежского университета установили, что состоит планета в основном из воды. Вода находится в твёрдом состоянии льда под большим давлением и при температуре порядка 300 градусов по Цельсию, что приводит к эффекту «горячего льда». Гравитация создаёт огромное давление на воду, молекулы которой превращаясь в лёд. И даже несмотря на сверхвысокую температуру, вода не способна испаряться с поверхности. Поэтому Глизе 436 b весьма уникальная планета.

№2. Эль Гордо - самая крупная космическая структура в ранней Вселенной

Галактический кластер - это сложная суперструктура, состоящая из нескольких галактик. Кластер ACT-CL J0102-4915, с неофициальным названием Эль Гордо, был открыт в 2011 году и считается самой крупной космической структурой в ранней Вселенной. Согласно последним расчетам ученых, эта система в 3 квадриллиона раза массивнее Солнца. Кластер Эль Гордо находится в 7 миллиардах световых лет от Земли.

Согласно результатам нового исследования, Эль Гордо является результатом слияния двух кластеров, которые сталкиваются на скорости несколько миллионов километров в час.

№1. 55 Рака E – алмазная планета

Планету 55 Рака e обнаружили в 2004 году в планетной системе солнцеподобной звезды 55 Рака A. Масса планеты больше массы Земли почти в 9 раз.
Температура на стороне, обращённой к материнской звезде, равна +2400°C, и представляет из себя гигантский океан лавы, на теневой стороне температура составляет +1100°C.
Согласно новым исследованиям, 55 Рака e в своём составе содержит большую долю углерода. Считается, что треть массы планеты составляют толстые слои из алмаза. При этом воды в составе планеты почти нет. Планета находится в 40 световых годах от Земли.

P.S.
Масса Земли равна 5.97×10 в 24 степени кг
Планеты-гиганты Солнечной системы:
Юпитер - масса в 318 раз больше земной
Сатурн - масса в 95 раз больше земной
Уран - масса в 14 раз больше земной
Нептун - масса в 17 раз больше земной

Краткое содержание предыдущих серий:

Ученые говорят о возникновении Вселенной, природе загадочной темной материи, медицине 21-го века и существовании частицы, о которой до этих дней не знал мир.

В субботу в нашем городе завершалась международная конференция Large Hadron Collider Phisics (LHCP) 2015, посвященная работе Большого адронного коллайдера (БАК) и других подразделений международной лаборатории высоких энергий CERN.

На пороге открытия

О главном научном итоге конференции физики говорят осторожно.

«Есть закономерность: всякое новое качество появлялось с увеличением энергии. И в 1976 году, когда мы поняли, что элементарные частицы – это не протоны, а кварки. И в 2012-м, когда был открыт бозон Хиггса. Сейчас мы увеличили энергию в два раза – может быть, что-нибудь и откроем. На заседании кое-что уже прозвучало, но мы не можем точно говорить без предварительных результатов»,

– объясняет член-корреспондент РАН, руководитель Отделения физики высоких энергий Петербургского института ядерной физики НИЦ «Курчатовский институт» Алексей Воробьев.

Скорее всего, академик говорит об открытии новых частиц, подобных фотону, но с очень большой массой.

Подробнее о них рассказывает профессор СПбГУ Александр Андрианов:

«Вряд ли они элементарные. Есть техни-теория (как направление музыки «техно»), которая предполагает, что векторные бозоны состоят из техни-кварков, которые сами по себе не взаимодействуют с нами».

Существуют такие частицы 10 в минус 24-й степени секунд, но их влияние на современную физику огромно.

Интенсификация-2015

Говоря о предстоящих открытиях, профессор предупреждает, что увеличение мощности ускорителя не единственный способ получить значимые результаты:

«Стремиться к большим энергиям не всегда полезно. Потому что от них возрастает температура, а ядерная плотность становится очень маленькой. Иногда нужно промежуточное состояние – больше ток и чуть меньше энергии».

Поэтому петербургские физики разработали систему, которая в 10 раз увеличивает интенсивность потока частиц.

«Как все русские изобретатели – с помощью простого приспособления и смекалки»,

– смеется заведующий лабораторией СПбГУ, руководитель группы СПбГУ в коллаборации ALICE Георгий Феофилов.

Сделано в России

Проведение мероприятия в Петербурге отражает вклад наших земляков в международный проект.

«Идеи, которые привнесли российские ученые, не имеют аналогов»,

– констатирует заместитель генерального директора ЦЕРН по науке Сержио Бертолучи.

Подробнее о работе коллег рассказывает профессор Университета Фрайбурга, член Комитета европейской стратегии физики высоких энергий, основатель и бывший руководитель коллаборации ATLAS Питер Йенни:

«Участие российских институтов в проекте началось около 20 лет назад, уже в то время у ваших физиков было понимание, как ставить эксперименты на БАК. Некоторые из этих идей были реализованы. То, что сделали наши российские коллеги, работает отлично».

Так идеи, возникшие в Петербурге, стали базовыми при создании коллаборации ALICE, подразделения ЦЕРН, в котором изучают праматерию, сформировавшуюся сразу после Большого взрыва.

«Инженерный и научный потенциал нашего города позволил разработать предложения, которые в 1992 году прошли в ЦЕРН и работают до сих пор. Сейчас в СПбГУ занимаются модернизацией детекторов установки ALICE, к процессу подключились студенты университета», – говорит Григорий Феофилов.

Почти как в футболе

Всего в ЦЕРНе работает больше восьмисот физиков, инженеров и программистов из России. Только три страны – Италия, Германия и Франция, а также США, которые не входят в объединение, – могут похвастаться большим присутствием.

Но у проведения конференции в Петербурге есть и другой аспект, политический. Его озвучивает заместитель директора Центра фундаментальных исследований НИЦ «Курчатовский институт» Владимир Шевченко:

«Почему мы любим проводить в России чемпионаты по футболу? Потому что организаторы всегда имеют некоторые преимущества. Кроме того, проведение такого крупного форума в нашей стране – напоминание о нас как о крупном игроке. Державе, у которой есть свои интересы».

Перед нами портал в новый мир

«Те, кто говорит, что коллайдер – самое горячее место во Вселенной, не ошибаются. При столкновении ядер, разогнанных почти до скорости света, материя становится чем-то очень интересным для изучения, – признается Григорий Феофилов. – Дает ключи к открытиям в области астрофизики, влияет на фундаментальную науку – понимание стандартной модели и отклонений от нее».

Температура в ходе экспериментов измеряется триллионами градусов, то есть в сотни раз превосходит температуру Солнца.

Что касается стандартной модели, неизменным предметом обсуждения остается обнаруженный на БАК в 2012 году бозон Хиггса, или «хиггс», как его кратко называют ученые. Эта элементарная частица подтвердила состоятельность основной теоретической конструкции современной физики и в то же время вывела человечество за пределы стандартной модели, в неведомые измерения.

«Важно понимать, что хиггс – не «еще одна частица», а представитель нового типа материи со спином ноль. Перед нами открывается портал в новый мир, узнать, что ждет за воротами, – задача на много лет для всего научного сообщества», –

предсказывает Владимир Шевченко.

Темные начала

Есть и другие прогнозы.

«Самым впечатляющим открытием, которое нам предстоит, должна стать разгадка тайны темной материи. Мы можем получить результат, либо увеличив энергию в ускорителе, либо проводя более точные измерения частиц»,

– надеется Питер Йенни.

Темная материя действительно остается главной загадкой нашего века – Вселенная на 96% состоит из этой субстанции, но мы не можем ни видеть ее, ни регистрировать, только определять ее существование по воздействию на видимые 4%. Понимание того, что такое темная материя, скорее всего, перевернет все наши представления о реальности. Но даже этими удивительными открытиями не исчерпываются возможности ЦЕРНа.

«Я не знаю, что природа откроет нам в следующий момент»,

– честно признается заместитель генерального директора ЦЕРН по науке Сержио Бертолучи.

Только для больных

Есть и более понятные результаты работы ускорителя. Именно в ЦЕРНе возникла адронная терапия – использование пучков заряженных частиц для точечного облучения опухолей. Воздействие происходит настолько локально, что не касается здоровых тканей.

«Это сплав физики высоких энергий и новейших медицинских технологий, который дает очень высокие показатели»,

– отмечает Григорий Феофилов.

В Москве и Петербурге запланировано строительство двух частных протонных центров. Большему распространению адронной медицины в России мешает несовершенство законодательства, объясняет Владимир Шевченко: физик не имеет права оказывать медицинские услуги, а врач не владеет физикой высоких энергий.

В ожидании конца света

В глазах обывателя эксперименты на Большом адроном коллайдере чаще всего ассоциируются не с великими открытиями, а с глобальной катастрофой.

Семь лет назад ученых из ЦЕРН даже пытались судить за попытку организовать конец света.

Представления общества хорошо выражает картинка, на которой перебинтованный ученый сообщает журналисту: «С помощью БАК мы узнали, что Вселенная появилась в результате взрыва». Или футболка с четырьмя рукавами и надписью «Я пережил запуск адронного коллайдера».

Физики знают о таких шутках и иронизируют в ответ.

«Если в ЦЕРНе будет обнаружена черная дыра, это станет большим научным открытием. Правда, цена его тоже будет большой – все человечество исчезнет», – говорит Алексей Воробьев.

Впрочем, отчаиваться рано. Физика учит, что маленькая черная дыра должна испариться, а вовсе не поглотить мироздание.

Все уже случилось

Академик РАН, директор Объединенного института ядерных исследований (ОИЯИ, Дубна) Виктор Матвеев советует соблюдать спокойствие:

«Человеку, не имеющему дела с физикой, трудно представить масштабы процессов. Эксперименты в лаборатории лишь повторяют то, что было во Вселенной. Все, что могло случиться, уже случилось. Если бы оно несло катастрофические последствия, нас с вами уже бы не было».

Из того, что мы существуем, следует вывод: Большой адронный коллайдер не несет опасности человечеству. И это доказательство должно быть понятно даже людям, которые бесконечно далеки от физики высоких энергий.