Теорема умножения вероятностей событий. Произведение вероятностей совместных событий Чему равна вероятность произведения двух произвольных событий


Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.

Например, на охоте проиведены два выстрела. Событие A - попадание в утку с первого выстрела, событие B - попадание со второго выстрела. Тогда сумма событий A и B - попадание с первого или второго выстрела или с двух выстрелов.

Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.

Сложение вероятностей несовместных событий

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле.

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция для студентов землеустроительного факультета

заочной формы обучения

Горки, 2012

Сложение и умножение вероятностей. Повторные

независимые испытания

  1. Сложение вероятностей

Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

Из данной теоремы следует:

сумма вероятностей событий, образующих полную группу, равна единице;

сумма вероятностей противоположных событий равна единице, т.е.
.

Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

Решение . Обозначим события:

A ={извлечён цветной шар};

B ={извлечён белый шар};

C ={извлечён красный шар};

D ={извлечён синий шар}.

Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

Решение . Обозначим события:

A ={вынуты шары одного цвета};

B ={вынуты шары белого цвета};

C ={вынуты шары чёрного цвета}.

Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
. Вероятность события В равна
, где
4,

. Подставим k и n в формулу и получим
Аналогично найдём вероятность события С :
, где
,
, т.е.
. Тогда
.

Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

Решение . Обозначим события:

A ={среди вынутых карт не менее трёх тузов};

B ={среди вынутых карт три туза};

C ={среди вынутых карт четыре туза}.

Так как A = B + C , а события В и С несовместны, то
. Найдём вероятности событий В и С :


,
. Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

0.0022.

  1. Умножение вероятностей

Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
. Это определение распространяется на любое конечное число событий.

Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События , , … , называются независимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

Пример 4 . Два стрелка стреляют по цели. Обозначим события:

A ={первый стрелок попал в цель};

B ={второй стрелок попал в цель}.

Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

Эта теорема справедлива и для n независимых в совокупности событий: .

Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

Решение . Обозначим события:

A

B

C ={оба стрелка попадут в цель}.

Так как
, а события А и В независимы, то
, т.е. .

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
или
.

Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

A ={извлечён белый шар} ;

B ={извлечён чёрный шар}.

Перед началом извлечения шаров из урны
. Из урны извлекли один шар и он оказался чёрным. Тогда вероятность события А после наступления события В будет уже другой, равной . Это означает, что вероятность события А зависит от события В , т.е. эти события будут зависимыми.

Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или .

Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

Решение . Обозначим события:

A ={первым извлечён чёрный шар};

B ={вторым извлечён чёрный шар}.

События А и В зависимы, так как
, а
. Тогда
.

Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

Решение . Обозначим события:

A ={произойдут два попадания в цель};

B ={первый стрелок попадёт в цель};

C ={второй стрелок попадёт в цель};

D ={третий стрелок попадёт в цель};

={первый стрелок не попадёт в цель};

={второй стрелок не попадёт в цель};

={третий стрелок не попадёт в цель}.

По условию примера
,
,
,

,
,
. Так как , то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

Пусть события
образуют полную группу событий некоторого испытания, а событии А может наступить только с одним из этих событий. Если известны вероятности и условные вероятности события А , то вероятность события А вычисляется по формуле:

Или
. Эта формула называется формулой полной вероятности , а события
гипотезами .

Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

Решение . Обозначим события:

A ={взятая деталь будет бракованной};

={деталь изготовлена на первом станке};

={деталь изготовлена на втором станке}.

Вероятность того, что деталь изготовлена на первом станке, равна
. Для второго станка
. По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
. Для второго станка эта вероятность равна
. Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
, равна
, где
- полная вероятность события А . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
после того, как стало известно, что событие А уже наступило.

Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

Решение . Обозначим события:

A ={куплена стандартная деталь};

={деталь изготовлена на первом заводе};

={деталь изготовлена на втором заводе}.

По условию примера
,
,
и
. Вычислим полную вероятность события А : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

.

Задания для самостоятельной работы

    Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

    В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

    На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

    Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

    Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

    Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

    Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

    На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

    В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

    На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

    Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

    Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

Часто бывает так, что вероятность некото-рого события можно найти, зная вероятности других событий, связанных с этим со-бытием.

Теорема сложения вероятностей.

?Теорема 2.6. (Теорема сложения вероятностей ). Вероят-ность суммы (объедине-ния; появления одного из них, безраз-лично какого) двух произвольных событий равна сумме вероят-ностей этих событий за вычетом вероятности их совместного появле-ния, т.е. P (A +B ) = P (A ) + P (B ) - P (AB ).

Следствие 1. Вероятность суммы (объединения) попарно не-совместных событий равна сумме их вероятностей, т.е. P (A 1 +A 2 +...+A n ) = = P (A 1) + P (A 2) + ... + P (A n ).

Следствие 2. Пусть A 1 , A 2 , ... , A n - полная группа попарно несовместных собы-тий. Тогда P (A 1)+P (A 2)+ ... +P (A n ) = 1.

Следствие 3. Сумма вероятностей противоположных собы-тий равна единице, т.е. P (A ) + P (`A ) = 1.

Пример 2.10. В урне 5 белых, 6 черных и 9 красных шаров. Какова вероятность того, что первый наугад вынутый шар окажется черным или красным?

Решение. Здесь имеется всего 20 элементарных исходов, из кото-рых появлению черного шара бла-гоприятствует 6, а появлению крас-ного - 9. Поэтому вероятность со-бытия A - появление черного шара: P (A ) = 6/20, а вероятность события B - появление красного шара: P (A ) = 9/20. Поскольку собы-тия A и B несовме-стны (вынимается всего один шар), то P (A +B ) = P (A ) + P (B ) = 6/20 + 9/20 = 0,75. Ответ : 0,75.

? Условная вероятность события B (P A (B)) - вероятность события B, вычислен-ная при условии, что событие A уже про-изошло . Если A и B - независимые события, то P A (B ) = P (B ), P B (A ) = P (A ).

Теорема умножения вероятностей.

?Теорема 2.7. (Теорема умножения вероятностей ). Вероят-ность произведения (пе-ресечения; совместного появления) двух произвольных событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при усло-вии, что первое собы-тие уже наступило, т.е. P (AB ) = P (A P A (B ) = P (B P B (A ).

Пример 2.11. На полке стоят 11 научно-популярных книг и 5 ху-дожественных. Какова вероят-ность того, что две подряд наугад взятые книги окажутся художественными?

Решение. Рассмотрим два события B 1 и B 2: B 1 - при первом испы-та-нии взята художественная книга, B 2 - при втором испытании взята ху-дожественная книга. По теореме 2.7 вероятность такого собы-тия равна P (B 1 B 2)=P (B 1)·P B 1 (B 2). Вероятность события B 1 P (B 1) = 5/16. По-сле первого испытания на полке останется 15 книг, из которых 4 ху-доже-ственные, по-этому условная веро-ятность P B 1 (B 2) = 4/15. Отсюда искомая вероятность равна: P (B 1 B 2) = . Ответ : 1/12.


Следствие 1. Вероятность совместного появления несколь-ких событий равна про-изведению вероятности одного из них на условные вероят-ности всех остальных, при-чем вероятность ка-ждого последующего события вычис-ляют при условии, что все предыдущие события уже наступили, т.е. P (A 1 ·A 2 ·...·A n ) = P (A 1)·P A 1 (A 2) P A 1A 2 (A 3). · ... ·P A 1 A 2… An -1 (A n ).

Пример 2.12. Из десяти карточек составлено слово «МАТЕМА-ТИКА». Из них школьник нау-дачу выбирает поочередно четыре кар-точки и приставляет одну к другой. Какова вероятность того, что по-лучится слово «ТЕМА»?

Решение. Введем события A 1 , A 2 , A 3 , A 4 , состоящие в том, что пер-вая выбранная буква - Т, вторая - Е, тре-тья - М и четвертая - А. Нам нужно найти вероят-ность произведения этих событий. По след-ствию 1 из тео-ремы 2.7 имеем:

P (A 1 ·A 2 ·A 3 ·A 4) = P (A 1)·P A 1 (A 2)·P A 1A 2 (A 3)·P A 1A 2A 3 (A 4) = Ответ : 1/420.

Следствие 2. Если A 1 ,A 2 ,...,A n - независимые события, то ве-роятность их произве-дения (совместного появления) равна про-изведению вероятностей этих собы-тий, т.е. P (A 1 ·A 2 · ... ·A n ) = P (A 1)·P (A 2)· ... ·P (A n ).

Пример 2.13. Два стрелка независимо один от другого де-лают по одному выстрелу по од-ной и той же мишени. Вероятность поражения мишени первым стрелком - 0,7, вторым - 0,8. Какова вероят-ность того, что ми-шень будет поражена?

Решение. Пусть событие А состоит в том, что мишень поразил пер-вый стрелок, а событие В - в том, что ми-шень поразил второй стрелок. По условию Р (А ) = 0,7 и Р (В ) =0,8.

1-й способ . Рассмотрим противоположные события:`A - промах первого стрелка,`B - промах вто-рого. По следствию 3 из тео-ремы 2.6 получаем Р (`A ) = 1-0,7 = 0,3 и Р (`B ) = 1-0,8 = 0,2. Произведение собы-тий `A ·`B означает промах обоих стрелков. По смыслу задачи собы-тия А и В являются незави-симыми, поэтому и противоположные со-бытия`A и`B также будут независимыми. По следствию 2 из теоремы 2.7 получаем вероят-ность того, что оба стрелка промахнутся: Р(`А·`В) = 0,3·0,2 = 0,06. Нас же интересу-ет вероятность противоположного события, состоящего в том, что мишень поражена. По-этому искомую вероят-ность мы находим по следствию 3 из теоремы 2.6: 1 - 0,06 = 0,94.

2-й способ . Искомая событие (мишень будет поражена хотя бы од-ним стрелком) есть сумма собы-тий A и B . По теореме 2.6. P (A +B ) = P (A ) + P (B ) - P (AB ) = 0,7 + 0,8 - 0,7·0,8 = 1,5 - 0,56 = 0,94. Ответ : 0,94.

Пример 2.14 . В студенческой группе 25 человек. Какова вероят-ность того, что дни рождения хотя бы у двоих совпадают?

Решение . Вероятность того, что дни рождения у двух произвольно взятых людей совпадают, равна 1/365 (считаем, что попадания дня рождения на любой день в году - равновозможные случаи). Тогда ве-роятность того, что дни рожде-ния двух людей не совпадают, т.е. веро-ятно-сть противопо-ложного события равна 1-1/365 = 364/365. Вероят-ность того, что день рожде-ния третьего отличается от дней рождения двух предыдущих, составит 363/365 (363 случая из 365 благо-приятст-вуют этому событию). Рассуждая аналогично, находим, что для 25-го члена группы эта веро-ятность равна 341/365. Далее найдем вероят-ность того, что дни рождения всех 25 членов группы не совпадают. По-скольку все эти события (несовпадение дня рождения каждого оче-редного члена группы с днями ро-ждения преды-дущих) независимы, то по следствию 2 из теоремы 2.7 получаем:

P (A 2 A 3 ... A 25) = · · ... · » 0,43.

Это вероятность того, что дни рождения у всех 25 человек не сов-падают. Ве-роятность противопо-ложного события будет вероятностью того, что хотя бы у двоих дни рождения совпадают, т.е. иско-мой веро-ятностью P » 1-0,43 = 0,57. Ответ : » 0,57.

Формула полной вероятно-сти.

?Теорема 2.8. Пусть B 1 , B 2 , …, B n - полная группа попарно не-совместных событий. Ве-роятность события A , которое может наступить лишь при условии наступления од-ного из событий B 1 , B 2 , …, B n , равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность собы-тия A , т.е.

P(A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + … + P (B n P Bn (A ).

Эта формула называется формулой полной вероятно-сти . События B 1 , B 2 , …, B n , удовлетворяющие условию теоремы 2.8, называют гипотезами .

Пример 2.15. Турист равновероятно выбирает один из трех маршру-тов: конный, водный и горный. Вероятность, что он успешно преодолеет путь при выборе конного способа передвижения, равна 0,75, при выборе водного пути - 0,8, при выборе горного маршрута - 0,55. Найдите вероятность, что турист успешно преодолеет весь путь при любом выборе маршрута.

Решение . Введем события: A - «Турист успешно преодолеет весь путь при любом выборе маршрута», B 1 , B 2 , B 3 - выбран соответственно, конный, водный и горный маршрут. Поскольку выбор маршрута равновероятен, то вероятно-сти выбора каждого маршрута P (B 1) = P (B 2) = P (B 3) = 1/3. По условию P B 1 (A ) = 0,75; P B 2 (A ) = 0,8; P B 3 (A ) = 0,55. Тогда по формуле полной вероятности: P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = (1/3)·0,75 + (1/3) ·0,8 + (1/3)0,55 = 0,7.

Ответ : 0,7.

?Теорема 2.9. Условная вероятность любой гипотезы B i (i = 1, 2, … ,n ) вычисляется по формуле Бейеса :

Формула Бейеса позволяет переоценить вероятности гипотез после того, как ста-но-вится известным результат испытания, в итоге которого появилось событие A .

Пример 2.16. Имеется три набора микросхем, первый из которых содержит 100, второй 300 и тре-тий 600 микросхем. Вероятность того, что микросхема, взятая наугад из первого набора, исправна, равна 0,9, а для второго и третьего наборов - соответственно 0,85 и 0,8. Какова вероятность того, что: а) произвольно взятая микросхема исправна: б) исправная микросхема извлечена из второго на-бора?

Решение . а) В данном случае имеется три гипотезы, вероятности которых P (B 1) = 0,1, P (B 2) = 0,3, P (B 3) = 0,6. Пользуясь формулой полной вероятности, находим P (A ) = P (B 1)·P B 1 (A ) + P (B 2)·P B 2 (A ) + P (B 3)·P B 3 (A ) = 0,1·0,9 + 0,3·0,85 + 0,6·0,8 = 0,825.

б) Допустим, что искомое событие A произошло - извлечена ис-правная микросхема. Найдем ве-ро-ятность P A (B 2) того, что эта микро-схема извлечена из второго набора. Согласно формулы Бейеса,

Ответ : а) 0,825; б) 17/55.

Пример 2.17. Из 10 учеников, которые пришли на экзамен по ма-тематике, трое подготовились от-лично, четверо - хорошо, двое - удовлетворительно, а один совсем не готовился. В билетах 20 вопро-сов. Отлично подготовившиеся ученики могут ответить на все 20 во-просов, хорошо - на 16 вопросов, удовлетворительно - на 10, и непод-готовившийся - на 5 вопросов. Каждый ученик получает наугад 3 во-проса из 20. Ученик, приглашенный первым, ответил на все 3 вопроса. Какова вероятность того, что он отличник?

P A (B 1). По фор-муле Бейеса P A (B 1) = » 0,58.

Как видим, искомая вероятность сравнительно не велика, Поэтому учителю придется предложить ученику еще несколько дополнитель-ных вопросов. Ответ : 0,58.

Начнем с задачи.

Предположим, что вероятность получения вами пятерки за контрольную равна 0,5, а четверки - 0,3. Какова вероятность того, что за контрольную вы получите 4 или 5?

Некоторые сразу выпалят: «0,8», но почему именно так? Почему, например, не 0,15 (перемножили, а не сложили)? Разберемся.

Предположим, есть некоторый опыт, у которого есть исходов. Из них наступлению события благоприятны , а событию - . Нетрудно по формуле найти вероятности наступления каждого из событий - это соответственно и . Но какова вероятность того, что наступит либо первое событие, либо второе? Иначе говоря, мы ищем вероятность объединения этих событий. Для этого надо выяснить, сколько у нас благоприятных исходов. ? Не совсем. Ведь может случиться так, что эти события выполнятся одновременно.

Тогда предположим, что события непересекающиеся, то есть не могут выполняться одновременно. Вот тогда получаем, что благоприятных исходов для объединения - . Значит, вероятность объединения будет равна:

Вероятность объединения несовместных событий равна сумме их вероятностей.

Обратим внимание: здесь речь идет об ОДНОМ эксперименте, в результате которого может наступить либо первое событие, либо второе, но не оба сразу.

В частности, в примере с контрольной мы понимаем, что ученик не может одновременно получить за контрольную и 5, и 4 (речь идет об одной оценке за одну и ту же контрольную), значит, вероятность того, что он получит 4 или 5, равна сумме вероятностей, то есть, все-таки, 0,8.

Ответ: 0,8.

А что делать, если события пересекаются, то есть существуют исходы, благоприятные для них обоих? Такая ситуация будет рассмотрена в конце урока.

2. Математический форум Math Help Planet ()

3. Интернет-сайт "Математика, которая мне нравится" ()

Домашнее задание

1. Два стрелка стреляют по мишени. Первый стрелок поражает мишень с вероятностью 0,9. Второй стрелок поражает мишень с вероятностью 0,8. Найти вероятность того, что мишень будет поражена.

2. Случайный эксперимент состоит в подбрасывании двух игральных костей. Одна из игральных костей окрашена в синий цвет, другая - в красный. Найти вероятность того, что на синей игральной кости выпадет число 3, а на красной игральной кости выпадет число 4.

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

Основные теоремы теории вероятности

Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

Запишем теорему сложения символически:

Р(А + В) = Р(А)+Р(В) ,

где Р - вероятность соответствующего события (событие указывается в скобках).

Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

Символически это записывается следующей формулой:

Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.