Международная система единиц (СИ). Система измерения си - история, назначение, роль в физике Основные единицы системы си таблица


Брошюра СИ издаётся с 1970 года, с 1985 года выходит на французском и английском языках, переведена также на ряд других языков, однако официальным считается текст только на французском языке.

Энциклопедичный YouTube

    1 / 5

    ✪ Международная система единиц СИ - Мыслить №113

    ✪ Перевод величин в систему СИ

    ✪ Физические величины. Измерение физических величин. Система единиц

    ✪ Международная система единиц

    ✪ Единицы измерения системы СИ в электронике, ...

    Субтитры

Общие сведения

Строгое определение СИ формулируется таким образом:

Международная система единиц (СИ) - система единиц, основанная на Международной системе величин , вместе с наименованиями и обозначениями, а также набором приставок и их наименованиями и обозначениями вместе с правилами их применения, принятая Генеральной конференцией по мерам и весам (CGPM).

Приставки можно использовать перед наименованиями единиц. Они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

Наименования и обозначения единиц

Согласно международным документам (Брошюра СИ, ISO 80000, Международный метрологический словарь ), единицы СИ имеют наименования и обозначения. Наименования единиц могут записываться и произноситься по-разному на разных языках, например: фр. kilogramme , англ. kilogram , порт. quilograma , валл. cilogram , болг. килограм , греч. χιλιόγραμμο , кит. 千克 , яп. キログラム . В таблице даны французские и английские наименования, указанные в международных документах. Обозначения единиц, согласно Брошюре СИ, являются не сокращениями, а математическими объектами (фр. entités mathématiques , англ. mathematical entities ). Они входят в международную научную символику ISO 80000 и от языка не зависят, например: kg. В международных обозначениях единиц используются буквы латинского алфавита , в отдельных случаях греческие буквы или специальные символы.

Однако на постсоветском пространстве (СНГ , СНГ-2 , Грузия) и в Монголии , где принят алфавит на основе кириллицы , наряду с международными обозначениями (а фактически - вместо них) используются обозначения, основанные на национальных наименованиях: «килограмм» - кг, арм. կիլոգրամ -կգ, груз. კილოგრამი - კგ, азерб. kiloqram - kq. С 1978 года русские обозначения единиц подчиняются тем же правилам написания, что и международные (см. ниже).

История

В 1874 году была представлена система СГС , основанная на трёх единицах - сантиметр , грамм и секунда - и десятичных приставках от микро до мега .

В 1875 году представителями семнадцати государств (Россия, Германия, США, Франция, Италия и др.) была подписана Метрическая конвенция , в соответствии с которой были созданы Международный комитет мер и весов (фр. Comité International des Poids et Mesures, CIPM ) и Международное бюро мер и весов (фр. Bureau International des Poids et Mesures, BIPM ), а также предусмотрен регулярный созыв Генеральных конференций по мерам и весам (ГКМВ) (фр. Conférence Générale des Poids et Mesures, CGPM ). Были начаты работы по разработке международных эталонов метра и килограмма .

В последующем были введены основные единицы для физических величин в области электричества и оптики.

В 1956 году Международный комитет мер и весов рекомендовал, чтобы системе единиц, базирующейся на основных единицах, принятых X ГКМВ, было присвоено наименование «Système International d’Unités» .

В 1960 году XI ГКМВ приняла стандарт, который впервые получил название «Международная система единиц», и установила международное сокращённое наименование этой системы «SI». Основными единицами в ней стали метр, килограмм, секунда, ампер, градус Кельвина и кандела .

XIII ГКМВ (1967-1968) приняла новое определение единицы термодинамической температуры, присвоила ей имя «кельвин» и обозначение «К» (ранее единица называлась «градус Кельвина», а её обозначением был «°K») .

XIII ГКМВ (1967-1968) приняла новое определение секунды .

В 1971 году XIV ГКМВ внесла изменения в СИ, добавив, в частности, в число основных единиц единицу количества вещества (моль) .

В 1979 году XVI ГКМВ приняла новое определение канделы .

В 1983 году XVII ГКМВ дала новое определение метра .

Единицы СИ

Наименования единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится, в отличие от обычных сокращений.

Основные единицы

Величина Единица
Наименование Символ размерности Наименование Обозначение
русское французское/английское русское международное
Длина L метр mètre/metre м m
Масса M килограмм kilogramme/kilogram кг kg
Время T секунда seconde/second с s
Сила электрического тока I ампер ampère/ampere А A
Термодинамическая температура Θ кельвин kelvin К K
Количество вещества N моль mole моль mol
Сила света J кандела candela кд cd

Производные единицы

Производные единицы могут быть выражены через основные с помощью математических операций - умножения и деления. Некоторым из производных единиц для удобства присвоены собственные наименования, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется, или из определения физической величины, для которой она вводится. Например, скорость - это расстояние, которое тело проходит в единицу времени; соответственно, единица измерения скорости - м/с (метр в секунду).

Часто одна и та же единица может быть записана по-разному, с помощью разного набора основных и производных единиц (см. последний столбец таблицы). Однако на практике используются установленные (или просто общепринятые) выражения, которые наилучшим образом отражают физический смысл величины. Например, для записи значения момента силы следует использовать Н·м , и не следует использовать м·Н или Дж.

Наименование некоторых производных единиц, имеющих одинаковое выражение через основные единицы, может быть разным. Например, единица измерения «секунда в минус первой степени» (1/с) называется герц (Гц) , когда она используется для измерения частоты, и называется беккерель (Бк) , когда она используется для измерения активности радионуклидов.

Производные единицы, имеющие специальные наименования и обозначения
Величина Единица Обозначение Выражение через основные единицы
русское наименование французское/английское наименование русское международное
Плоский угол радиан radian рад rad м·м −1 =
Телесный угол стерадиан steradian ср sr м 2 ·м −2 = 1
Температура Цельсия градус Цельсия degré Celsius/degree Celsius °C °C K
Частота герц hertz Гц Hz с −1
Сила ньютон newton Н N кг·м·c −2
Энергия джоуль joule Дж J Н·м = кг·м 2 ·c −2
Мощность ватт watt Вт W Дж/с = кг·м 2 ·c −3
Давление паскаль pascal Па Pa Н/м 2 = кг·м −1 ·с −2
Световой поток люмен lumen лм lm кд·ср
Освещённость люкс lux лк lx лм/м² = кд·ср/м²
Электрический заряд кулон coulomb Кл C А·с
Разность потенциалов вольт volt В V Дж/Кл = кг·м 2 ·с −3 ·А −1
Сопротивление ом ohm Ом Ω В/А = кг·м 2 ·с −3 ·А −2
Электроёмкость фарад farad Ф F Кл/В = с 4 ·А 2 ·кг −1 ·м −2
Магнитный поток вебер weber Вб Wb кг·м 2 ·с −2 ·А −1
Магнитная индукция тесла tesla Тл T Вб/м 2 = кг·с −2 ·А −1
Индуктивность генри henry Гн H кг·м 2 ·с −2 ·А −2
Электрическая проводимость сименс siemens См S Ом −1 = с 3 ·А 2 ·кг −1 ·м −2
беккерель becquerel Бк Bq с −1
Поглощённая доза ионизирующего излучения грей gray Гр Gy Дж/кг = м²/c²
Эффективная доза ионизирующего излучения зиверт sievert Зв Sv Дж/кг = м²/c²
Активность катализатора катал katal кат kat моль/с

Переопределение основных единиц

На XXIV ГКМВ 17-21 октября 2011 года была единогласно принята резолюция , в которой, в частности, предложено в будущей ревизии Международной системы единиц переопределить четыре основные единицы СИ: килограмм, ампер, кельвин и моль. Предполагается, что новые определения будут базироваться на фиксированных численных значениях постоянной Планка , элементарного электрического заряда , постоянной Больцмана и постоянной Авогадро , соответственно . Всем этим величинам будут приписаны точные значения, основанные на наиболее достоверных результатах измерений, рекомендованных Комитетом по данным для науки и техники (CODATA) . Под фиксированием (или фиксацией) подразумевается «принятие некоторого точного численного значения величины по определению» . В резолюции сформулированы следующие положения, касающихся этих единиц :

  • Килограмм останется единицей массы, но его величина будет устанавливаться фиксацией численного значения постоянной Планка равным в точности 6,626 06X⋅10 −34 , когда она выражена единицей СИ м 2 ·кг·с −1 , что эквивалентно Дж·с.
  • Ампер останется единицей силы электрического тока, но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X⋅10 −19 , когда он выражен единицей СИ с·А, что эквивалентно Кл.
  • Кельвин останется единицей термодинамической температуры, но его величина будет устанавливаться фиксацией численного значения постоянной Больцмана равным в точности 1,380 6X⋅10 −23 , когда она выражена единицей СИ м −2 ·кг·с −2 ·К −1 , что эквивалентно Дж·К −1 .
  • Моль останется единицей количества вещества, но его величина будет устанавливаться фиксацией численного значения постоянной Авогадро равным в точности 6,022 14X⋅10 23 , когда она выражена единицей СИ моль −1 .

Резолюция не предполагает изменять существа определений метра, секунды и канделы, однако для поддержания единства стиля, планируется принять новые, полностью эквивалентные существующим, определения в следующем виде:

  • Метр, обозначение м, является единицей длины; его величина устанавливается фиксацией численного значения скорости света в вакууме равным в точности 299 792 458, когда она выражена единицей СИ м·с −1 .
  • Секунда, обозначение с, является единицей времени; её величина устанавливается фиксацией численного значения частоты сверхтонкого расщепления основного состояния атома цезия-133 при температуре 0 К равным в точности 9 192 631 770, когда она выражена единицей СИ с −1 , что эквивалентно Гц.
  • Кандела, обозначение кд, является единицей силы света в заданном направлении; её величина устанавливается фиксацией численного значения световой эффективности монохроматического излучения частотой 540·10 12 Гц равным в точности 683, когда она выражена единицей СИ м −2 ·кг −1 ·с 3 ·кд·ср или кд·ср·Вт −1 , что эквивалентно лм·Вт −1 .

В результате реализации намерений, сформулированных в резолюции, СИ в своём новом виде станет системой единиц, в которой :

XXV ГКМВ, состоявшаяся в 2014 году, приняла решение продолжить работу по подготовке новой ревизии СИ и наметила закончить эту работу к 2018 году с тем, чтобы заменить существующую СИ обновлённым вариантом на XXVI ГКМВ в том же году .

Единицы, не входящие в СИ

Некоторые единицы, не входящие в СИ, по решению ГКМВ «допускаются для использования совместно с СИ».

Единица Французское/английское наименование Обозначение Величина в единицах СИ
русское международное
минута minute мин min 60 с
час heure/hour ч h 60 мин = 3600 с
сутки jour/day сут d 24 ч = 86 400 с
угловой градус degré/degree ° ° (π/180) рад
угловая минута minute (1/60)° = (π/10 800)
угловая секунда seconde/second (1/60)′ = (π/648 000)
литр litre л l, L 0,001 м³
тонна tonne т t 1000 кг
непер neper Нп Np безразмерна
бел bel Б B безразмерна
электронвольт electronvolt эВ eV ≈1,602 177 33⋅10 −19 Дж
атомная единица массы , дальтон unité de masse atomique unifiée, dalton/unified atomic mass unit, dalton а. е. м. u, Da ≈1,660 540 2⋅10 −27 кг
астрономическая единица unité astronomique/astronomical unit а. е. au 149 597 870 700 м (точно)
морская миля mille marin/nautical mile миля M 1852 м (точно)
узел nœud/knot уз kn 1 морская миля в час = (1852/3600) м/с
ар are а a 100 м²
гектар hectare га ha 10000 м²
бар bar бар bar 100000 Па
ангстрем ångström Å Å 10 −10 м
барн barn б b 10 −28 м²

Кроме того, Положение о единицах величин, допускаемых к применению в Российской Федерации, разрешает применение следующих внесистемных единиц: карат , град (гон) , световой год , парсек , фут , дюйм , килограмм-сила на квадратный сантиметр ,

Общие сведения

Приставки можно использовать перед названиями единиц; они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

Международные и русские обозначения

В последующем были введены базовые единицы для физических величин в области электричества и оптики.

Единицы СИ

Названия единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится, в отличие от обычных сокращений.

Основные единицы

Величина Единица измерения Обозначение
русское название международное название русское международное
Длина метр metre (meter) м m
Масса килограмм kilogram кг kg
Время секунда second с s
Сила тока ампер ampere А A
Термодинамическая температура кельвин kelvin К K
Сила света кандела candela кд cd
Количество вещества моль mole моль mol

Производные единицы

Производные единицы могут быть выражены через основные с помощью математических операций: умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется или определения физической величины, для которой она вводится. Например, скорость - это расстояние, которое тело проходит в единицу времени; соответственно, единица измерения скорости - м/с (метр в секунду).

Часто одна и та же единица может быть записана по-разному, с помощью разного набора основных и производных единиц (см., например, последнюю колонку в таблице ). Однако на практике используются установленные (или просто общепринятые) выражения, которые наилучшим образом отражают физический смысл величины. Например, для записи значения момента силы следует использовать Н·м, и не следует использовать м·Н или Дж.

Производные единицы с собственными названиями
Величина Единица измерения Обозначение Выражение
русское название международное название русское международное
Плоский угол радиан radian рад rad м·м −1 = 1
Телесный угол стерадиан steradian ср sr м 2 ·м −2 = 1
Температура по шкале Цельсия¹ градус Цельсия degree Celsius °C °C K
Частота герц hertz Гц Hz с −1
Сила ньютон newton Н N кг·м·c −2
Энергия джоуль joule Дж J Н·м = кг·м 2 ·c −2
Мощность ватт watt Вт W Дж/с = кг·м 2 ·c −3
Давление паскаль pascal Па Pa Н/м 2 = кг·м −1 ·с −2
Световой поток люмен lumen лм lm кд·ср
Освещённость люкс lux лк lx лм/м² = кд·ср/м²
Электрический заряд кулон coulomb Кл C А·с
Разность потенциалов вольт volt В V Дж/Кл = кг·м 2 ·с −3 ·А −1
Сопротивление ом ohm Ом Ω В/А = кг·м 2 ·с −3 ·А −2
Электроёмкость фарад farad Ф F Кл/В = с 4 ·А 2 ·кг −1 ·м −2
Магнитный поток вебер weber Вб Wb кг·м 2 ·с −2 ·А −1
Магнитная индукция тесла tesla Тл T Вб/м 2 = кг·с −2 ·А −1
Индуктивность генри henry Гн H кг·м 2 ·с −2 ·А −2
Электрическая проводимость сименс siemens См S Ом −1 = с 3 ·А 2 ·кг −1 ·м −2
беккерель becquerel Бк Bq с −1
Поглощённая доза ионизирующего излучения грэй gray Гр Gy Дж/кг = м²/c²
Эффективная доза ионизирующего излучения зиверт sievert Зв Sv Дж/кг = м²/c²
Активность катализатора катал katal кат kat моль/с

Шкалы Кельвина и Цельсия связаны между собой следующим образом: °C = K − 273,15

Единицы, не входящие в СИ

Некоторые единицы, не входящие в СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».

Единица измерения Международное название Обозначение Величина в единицах СИ
русское международное
минута minute мин min 60 с
час hour ч h 60 мин = 3600 с
сутки day сут d 24 ч = 86 400 с
градус degree ° ° (π/180) рад
угловая минута minute (1/60)° = (π/10 800)
угловая секунда second (1/60)′ = (π/648 000)
литр litre (liter) л l, L 1/1000 м³
тонна tonne т t 1000 кг
непер neper Нп Np безразмерна
бел bel Б B безразмерна
электронвольт electronvolt эВ eV ≈1,60217733×10 −19 Дж
атомная единица массы unified atomic mass unit а. е. м. u ≈1,6605402×10 −27 кг
астрономическая единица astronomical unit а. е. ua ≈1,49597870691×10 11 м
морская миля nautical mile миля - 1852 м (точно)
узел knot уз 1 морская миля в час = (1852/3600) м/с
ар are а a 10² м²
гектар hectare га ha 10 4 м²
бар bar бар bar 10 5 Па
ангстрем ångström Å Å 10 −10 м
барн barn б b 10 −28 м²

Другие единицы применять не разрешается.

Тем не менее, в различных областях иногда используются и другие единицы.

  • Единицы системы

, количество вещества и сила света . Единицы измерения для них - основные единицы СИ - метр , килограмм , секунда , ампер , кельвин , моль и кандела соответственно .

Полное официальное описание основных единиц СИ, а также СИ в целом вместе с её толкованием, содержится в действующей редакции Брошюры СИ (фр. Brochure SI , англ. The SI Brochure ) и в дополнении к ней, опубликованных Международным бюро мер и весов (МБМВ) и представленных на сайте МБМВ .

Остальные единицы СИ являются производными и образуются из основных с помощью уравнений, связывающих друг с другом физические величины Международной системы величин.

Основная единица может использоваться и для производной величины той же размерности . Например, количество осадков определяется как частное от деления объёма на площадь и в СИ выражается в метрах. В этом случае метр используется в качестве когерентной производной единицы .

Наименования и обозначения основных единиц, так же как и всех других единиц СИ, пишутся маленькими буквами (например, метр и его обозначение м). У этого правила есть исключение: обозначения единиц, названных фамилиями учёных, пишутся с заглавной буквы (например, ампер обозначается символом А).

Основные единицы

В таблице представлены все основные единицы СИ вместе с их определениями, обозначениями, физическими величинами, к которым они относятся, а также с кратким обоснованием их происхождения.

Основные единицы СИ
Единица Обозначение Величина Определение
Историческое происхождение, обоснование
Метр м Длина Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.
XVII Генеральная конференция по мерам и весам (ГКМВ) (1983 г, Резолюция 1)
1 ⁄ 10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа .
Килограмм кг Масса Килограмм есть единица массы, равная массе международного прототипа килограмма.
I ГКМВ (1899 г.) и III ГКМВ (1901 г.)
Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря .
Секунда с Время Секунда есть время, равное 9 192 631 770 периодам излучения , соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 .
XIII ГКМВ (1967 г., Резолюция 1)
«В покое при 0 К при отсутствии возмущения внешними полями»
(Добавлено в 1997 году)
Солнечные сутки разбиваются на 24 часа, каждый час разбивается на 60 минут, каждая минута разбивается на 60 секунд.
Секунда - это 1 ⁄ (24 × 60 × 60) часть солнечных суток.
Ампер А Сила электрического тока Ампер есть сила не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2⋅10 −7 ньютонов .
Международный комитет мер и весов (1946 г., Резолюция 2, одобренная IX ГКМВ в 1948 г.)
Устаревшая единица измерения электрического тока «Международный Ампер» определялся электрохимически как ток, необходимый для осаждения 1,118 миллиграммов серебра в секунду из раствора нитрата серебра. По сравнению с ампером Международной системе единиц (СИ) разница составляет 0,015%.
Кельвин К Термодинамическая Температура Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды .
XIII ГКМВ (1967 г., Резолюция 4)
В 2005 г. Международный комитет мер и весов установил требования к изотопному составу воды при реализации температуры тройной точки воды: 0,00015576 моля 2 H на один моль 1 Н , 0,0003799 моля 17 О на один моль 16 О и 0,0020052 моля 18 О на один моль 16 О .
Шкала Кельвина использует тот же шаг, что и шкала Цельсия , но 0 кельвинов - это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15 : °C = - 273,15.
Моль моль Количество вещества Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы (оговорены) и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.
XIV ГКМВ (1971 г., Резолюция 3)
Атомный вес или молекулярный вес, деленный на постоянную молярной массы, 1 г/моль.
Кандела кд Сила света Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540⋅10 12 герц , энергетическая сила света которого в этом направлении составляет (1/683) Вт /ср .
XVI ГКМВ (1979 г., Резолюция 3)
Сила света (англ. Candlepower, устар. Британская единица силы света), испускаемая горящей свечой.

Совершенствование системы единиц

XXI Генеральная конференция по мерам и весам (1999 год) рекомендовала в XXI веке «Национальным лабораториям продолжить исследования для привязки массы к фундаментальным или массовым константам для определения массы килограмма». Большинство ожиданий при этом связывалось с постоянной Планка и числом Авогадро .

В пояснительной записке, адресованной МКМВ в октябре 2009 года , президент консультативного совета МКМВ по единицам перечислил неопределённости физических фундаментальных констант при использовании текущих определений и тех, какими эти неопределённости станут при использовании новых предложенных определений единиц. Он рекомендовал МКМВ принять предложенные изменения в «определении килограмма , ампера , кельвина и моля , чтобы они выражались через величины фундаментальных констант h , e , k , и N A ».

XXIV Генеральная конференция по мерам и весам

На XXIV Генеральной конференции по мерам и весам 17-21 октября 2011 года была принята Резолюция, в соответствии с которой предполагается в будущей ревизии Международной системы единиц переопределить основные единицы таким образом, чтобы они были основаны не на созданных человеком артефактах (эталонах), а на фундаментальных физических константах или свойствах атомов, численные значения которых фиксируются и полагаются точными по определению .

Килограмм, ампер, кельвин, моль

В соответствии с решениями XXIV ГКМВ наиболее важные изменения должны затронуть четыре основные единицы СИ: килограмм, ампер, кельвин и моль. Новые определения этих единиц будут базироваться на фиксированных численных значениях следующих фундаментальных физических постоянных: постоянной Планка , элементарного электрического заряда , постоянной Больцмана и числа Авогадро , соответственно. Всем этим величинам будут приписаны точные значения, основанные на результатах наиболее точных измерений, рекомендованных Комитетом по данным для науки и техники (CODATA) .

В Резолюции сформулированы следующие положения, касающиеся этих единиц :

  • Килограмм останется единицей массы; но его величина будет устанавливаться фиксацией численного значения постоянной Планка равным в точности 6,626 06X⋅10 −34 , когда она выражена единицей СИ м 2 ·кг·с −1 , что эквивалентно Дж·с.
  • Ампер останется единицей силы электрического тока; но его величина будет устанавливаться фиксацией численного значения элементарного электрического заряда равным в точности 1,602 17X⋅10 −19 , когда он выражен единицей СИ с·А, что эквивалентно Кл.
  • Кельвин останется единицей термодинамической температуры; но его величина будет устанавливаться фиксацией численного значения постоянной Больцмана равным в точности 1,380 6X⋅10 −23 , когда она выражена единицей СИ м −2 ·кг·с −2 ·К −1 , что эквивалентно Дж·К −1 .
  • Моль останется единицей количества вещества; но его величина будет устанавливаться фиксацией численного значения постоянной Авогадро равным в точности 6,022 14X⋅10 23 моль −1 , когда она выражена единицей СИ моль −1 .

Метр, секунда, кандела

Определения метра и секунды уже в настоящее время связаны с точными значениями таких постоянных, как скорость света и величина расщепления основного состояния атома цезия, соответственно. Существующее определение канделы хотя и не привязано к какой-либо фундаментальной постоянной, тем не менее, также может рассматриваться как связанное с точным значением инварианта природы. Исходя из сказанного, изменять по существу определения метра, секунды и канделы не предполагается. Однако для поддержания единства стиля планируется принять новые, полностью эквивалентные существующим, формулировки определений в следующем виде:

  • Метр, символ м, является единицей длины; его величина устанавливается фиксацией численного значения скорости света в вакууме равным в точности 299 792 458, когда она выражена единицей СИ м·с −1 .
  • Секунда, символ с, является единицей времени; её величина устанавливается фиксацией численного значения частоты сверхтонкого расщепления основного состояния атома цезия-133 при температуре 0 К равным в точности 9 192 631 770, когда она выражена единицей СИ с −1 , что эквивалентно Гц.
  • Кандела, символ кд, является единицей силы света в заданном направлении; её величина устанавливается фиксацией численного значения световой эффективности монохроматического излучения частотой 540·10 12 Гц равным в точности 683, когда она выражена единицей СИ м −2 ·кг −1 ·с 3 ·кд·ср или кд·ср·Вт −1 , что эквивалентно лм·Вт −1 .

Новый облик СИ

В 2019 году вступит в силу выпуск СИ, основанный на фундаментальных постоянных, в котором :

См. также

Примечания

  1. The SI Brochure Описание СИ на сайте Международного бюро мер и весов (англ.)
Как определяли метр

В 17 веке, с развитием в Европе науки, начали все чаще звучать призывы к тому, чтобы ввести универсальную меру или католический метр. Это была бы десятичная мера, основанная на естественном явлении, и не зависящая от постановлений находящегося у власти человека. Такая мера заменила бы собой множество разнообразных систем мер, существовавших тогда.

Британский философ Джон Уилкинс предлагал принять за единицу длины длину маятника, полупериод которого был бы равен одной секунде. Однако в зависимости от места измерений значение получалось неодинаковым. Французский астроном Жан Рише установил этот факт во время путешествия в Южную Америку (1671 - 1673).

В 1790 году министр Талейран предложил измерить эталонную длину расположив маятник на строго установленной широте между Бордо и Греноблем - 45° северной широты. В результате, 8 мая 1790 года, на Французском Национальном собрании постановили, что метр - это длина маятника с полупериодом колебаний на широте 45°, равным 1 с. В соответствии с сегодняшней СИ, тот метр был бы равен 0,994 м. Это определение, однако, не устроило научную общественность.

30 марта 1791 года Французская академия наук приняла предложение задать эталонный метр как часть Парижского меридиана. Новая единица должна была быть одной десятимиллионной частью расстояния от экватора до Северного полюса, то есть одной десятимилионной долей четверти окружности Земли, измеренной вдоль Парижского меридиана. Это и стало называться «Метр подлинный и окончательный».

7 апреля 1795 Национальный Конвент принял закон о введении метрической системы во Франции и поручил комиссарам, в число которых входили Ш. О. Кулон, Ж. Л. Лагранж, П.-С. Лаплас и другие учёные, экспериментально определить единицы длины и массы.

В период с 1792 по 1797 год, по решению революционного Конвента, французские учёные Деламбр (1749-1822 гг.) и Мешен (1744-1804 гг.) за 6 лет измерили таки дугу парижского меридиана длиной в 9°40" от Дюнкерка до Барселоны, проложив цепь из 115 треугольников через всю Францию и часть Испании.

Впоследствии, однако, выяснилось, что из-за неправильного учёта полюсного сжатия Земли эталон оказался короче на 0,2 мм. Таким образом, длина меридиана в 40000 км лишь приблизительна. Первый прототип эталона метра из латуни, тем не менее, был в 1795 году изготовлен. Следует отметить, что единица массы (килограмм, определение которого было основано на массе одного кубического дециметра воды), тоже была привязана к определению метра.

История становления системы СИ

22 июня 1799 года во Франции были изготовлены два эталона из платины - эталонный метр и эталонный килограмм. Эту дату можно справедливо считать днем начала развития нынешней системы СИ.

В 1832 году Гаусс создает так называемую абсолютную систему единиц, приняв за основные три единицы: единицу времени - секунду, единицу длины - миллиметр, и единицу массы - грамм, ведь с использованием именно этих единиц ученому удалось измерить абсолютное значение магнитного поля Земли (эта система получила название СГС Гаусса).

В 1860-х под влиянием Максвелла и Томсона было сформулировано требование, согласно которому базовые и производные единицы необходимо согласовть между собой. В итоге система СГС была введена в 1874 году, при этом были выделены и приставки для обозначения дольных и кратных единиц от микро до мега.

В 1875 году представителями 17 государств, среди которых Россия, США, Франция, Германия, Италия, - была подписана Метрическая конвенция, согласно которой были учреждены Международное бюро мер, Международный комитет мер и начинал действовать регулярный созыв Генеральной конференции по мерам и весам (ГКМВ). Тогда же было положено начало работам по разработке международных эталона килограмма и эталона метра.

В 1889 году на первой конференции ГКМВ была принята система МКС, основанная на метре, килограмме и секунде, сходная с СГС, однако единицы МКС виделись более приемлемыми в силу удобства из практического использования. Позже будут введены единицы для оптики и электричества.

В 1948 году, по предписанию французского правительства и Международного союза теоретической и прикладной физики, девятая Генеральная конференция по мерам и весам выступила с поручением Международному комитету по мерам и весам предложить, с целью унификации системы единиц измерения, свои идеи по созданию единой системы единиц измерения, которая смогла бы быть принятой всеми государствами участниками Метрической конвенции.

В результате, в 1954 году на десятой ГКМВ были предложены и приняты следующие шесть единиц: метр, килограмм, секунда, ампер, градус Кельвина и кандела. В 1956 году система получила название «Système International d’Unitйs» - международная система единиц. В 1960 году был принят стандарт, который впервые назвали «Международная система единиц», и назначили сокращение «SI». Основными единицами остались те же шесть единиц: метр, килограмм, секунда, ампер, градус Кельвина и кандела. (Русскоязычное сокращение «СИ» можно расшифровать как «Система интернациональная»).

В 1963 году в СССР, по ГОСТу 9867-61 «Международная система единиц», СИ была принята в качестве предпочтительной для областей народного хозяйства, в науке и технике, а также для преподавания в учебных заведениях.

В 1968 году на тринадцатой ГКМВ единица «градус Кельвина» была заменена на «кельвин», также было принято обозначение «К». Кроме того было принято новое определение секунды: секунда - это интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного квантового состояния атома цезия-133. В 1997 году будет принято уточнение, согласно которому этот интервал времени относится к атому цезия-133 в покое при 0 К.

В 1971 году на 14 ГКМВ добавили еще одну основную единицу «моль» - единицу количества вещества. Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

В 1979 году на 16 ГКМВ приняли новое определение для канделы. Кандела - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср (ватт на стерадиан).

В 1983 году на 17 ГКМВ было дано новое определение метра. Метр - это длина пути, проходимого светом в вакууме за (1 / 299 792 458) секунды.

В 2009 году Правительством РФ было утверждено «Положение о единицах величин, допускаемых к применению в Российской Федерации», а в 2015 году в него были внесены изменения, призванные исключить «срок действия» некоторых внесистемных единиц.

Назначение системы СИ и ее роль в физике

На сегодняшний день международная система физических величин СИ принята по всему миру, и используется больше чем другие системы как в науке и технике, так и в обыденной жизни людей, - она является современным вариантом метрической системы.

Большинство стран используют в технике именно единицы системы СИ, даже если в повседневной жизни пользуются традиционными для этих территорий единицами. В США, например, привычные единицы определяются через единицы системы СИ при помощи фиксированных коэффициентов.

Величина Обозначение
русское наименование русское международное
Плоский угол радиан рад rad
Телесный угол стерадиан ср sr
Температура Цельсия градус Цельсия о С о С
Частота герц Гц Hz
Сила ньютон Н N
Энергия джоуль Дж J
Мощность ватт Вт W
Давление паскаль Па Pa
Световой поток люмен лм lm
Освещенность люкс лк lx
Электрический заряд кулон Кл C
Разность потенциалов вольт В V
Сопротивление ом Ом Ω
Электроемкость фарад Ф F
Магнитный поток вебер Вб Wb
Магнитная индукция тесла Тл T
Индуктивность генри Гн H
Электрическая проводимость сименс См S
Активность радиоактивного источника беккерель Бк Bq
Поглощенная доза ионизирующего излучения грей Гр Gy
Эффективная доза ионизирующего излучения зиверт Зв Sv
Активность катализатора катал кат kat

Исчерпывающее подробное описание системы СИ в официальном виде изложено в издаваемой с 1970 года «Брошюре СИ» и в дополнении к ней; эти документы опубликованы на официальном сайте Международного бюро мер и весов. Начиная с 1985 года данные документы выпускаются на английском и французском языках, и всегда переводятся на ряд языков мира, хотя официальный язык документа - французский.

Точное официальное определение системы СИ формулируется следующим образом: «Международная система единиц (СИ) - система единиц, основанная на Международной системе величин, вместе с наименованиями и обозначениями, а также набором приставок и их наименованиями и обозначениями вместе с правилами их применения, принятая Генеральной конференцией по мерам и весам (CGPM)».

Система СИ определяют семь основных единиц физических величин и их производные, а также приставки к ним. Регламентированы стандартные сокращения обозначений единиц и правила записи производных. Основных единиц, как и прежде, семь: килограмм, метр, секунда, ампер, кельвин, моль, кандела. Основные единицы отличаются независимыми размерностями, и не могут быть получены из других единиц.

Что касается производных единиц, то они могут быть получены на базе основных, путем проведения математических действий, таких как деление или умножение. Часть производных единиц, такие как «радиан», «люмен», «кулон», - имеют собственные названия.

Перед названием единицы можно использовать приставку, как например миллиметр - тысячная доля метра, а километр - тысяча метров. Приставка означает, что единицу необходимо разделить или умножить на целое число, являющееся конкретной степенью числа десять.

Физической величиной называется физическое свойство материального объекта, процесса, физического явления, охарактеризованное количественно.

Значение физической величины выражается одним или несколькими числами, характеризующими эту физическую величину, с указанием единицы измерения.

Размером физической величины являются значения чисел, фигурирующих в значении физической величины.

Единицы измерения физических величин.

Единицей измерения физической величины является величина фиксированного размера, которой присвоено числовое значение, равное единице. Применяется для количественного выражения однородных с ней физических величин. Системой единиц физических величин называют совокупность основных и производных единиц, основанную на некоторой системе величин.

Широкое распространение получило всего лишь некоторое количество систем единиц. В большинстве случаев во многих странах пользуются метрической системой.

Основные единицы.

Измерить физическую величину - значит сравнить ее с другой такой же физической величиной, принятой за единицу.

Длину предмета сравнивают с единицей длины, массу тела - с единицей веса и т.д. Но если один исследователь измерит длину в саженях, а другой в футах, им будет трудно сравнить эти две величины. Поэтому все физические величины во всем мире принято измерять в одних и тех же единицах. В 1963 году была принята Международная система единиц СИ (System international - SI).

Для каждой физической величины в системе единиц должна быть предусмотрена соответствующая единица измерения. Эталоном единицы измерения является ее физическая реализация.

Эталоном длины является метр - расстояние между двумя штрихами, нанесенными на стержне особой формы, изготовленном из сплава платины и иридия.

Эталоном времени служит продолжительность какого-либо правильно повторяющегося процесса, в качестве которого выбрано движение Земли вокруг Солнца: один оборот Земля совершает за год. Но за единицу времени принимают не год, а секунду .

За единицу скорости принимают скорость такого равномерного прямолинейного движения, при котором тело за 1 с совершает перемещение в 1 м.

Отдельная единица измерения используется для площади, объема, длины и т. д. Каждая единица определяется при выборе того или иного эталона. Но система единиц значительно удобнее, если в ней в качестве основных выбрано всего несколько единиц, а остальные определяются через основные. Например, если единицей длины является метр, то единицей площади будет квадратный метр, объема - кубический метр, скорости - метр в секунду и т. д.

Основными единицами физических величин в Международной системе единиц (СИ) являются: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), кандела (кд) и моль (моль).

Основные единицы СИ

Величина

Единица

Обозначение

Наименование

русское

международное

Сила электрического тока

Термодинамическая температура

Сила света

Количество вещества

Существуют также производные единицы СИ, у которых есть собственные наименования:

Производные единицы СИ, имеющие собственные наименования

Единица

Выражение производной единицы

Величина

Наименование

Обозначение

Через другие единицы СИ

Через основные и дополнительные единицы СИ

Давление

м -1 ЧкгЧс -2

Энергия, работа, количество теплоты

м 2 ЧкгЧс -2

Мощность, поток энергии

м 2 ЧкгЧс -3

Количество электричества, электрическийзаряд

Электрическое напряжение, электрическийпотенциал

м 2 ЧкгЧс -3 ЧА -1

Электрическая емкость

м -2 Чкг -1 Чс 4 ЧА 2

Электрическое сопротивление

м 2 ЧкгЧс -3 ЧА -2

Электрическая проводимость

м -2 Чкг -1 Чс 3 ЧА 2

Поток магнитной индукции

м 2 ЧкгЧс -2 ЧА -1

Магнитная индукция

кгЧс -2 ЧА -1

Индуктивность

м 2 ЧкгЧс -2 ЧА -2

Световой поток

Освещенность

м 2 ЧкдЧср

Активность радиоактивного источника

беккерель

Поглощенная доза излучения

И змерения . Для получения точного, объективного и легко воспроизводимого описания физической величины используют измерения. Без измерений физическую величину нельзя охарактеризовать количественно. Такие определения, как «низкое» или «высокое» давление, «низкая» или «высокая» температура отражают лищь субъективные мнения и не содержат сравнения с эталонными величинами. При измерении физической величины ей приписывают некоторое численное значение.

Измерения осуществляются с помощью измерительных приборов. Существует довольно большое количество измерительных приборов и приспособлений, от самых простых до сложных. Например, длину измеряют линейкой или рулеткой, температуру - термометром, ширину - кронциркулем.

Измерительные приборы классифицируются: по способу представления информации (показывающие или регистрирующие), по методу измерений (прямого действия и сравнения), по форме представлений показаний (аналоговый и цифровой), и др.

Для измерительных приборов характерны следующие параметры:

Диапазон измерений - область значений измеряемой величины, на которой рассчитан прибор при его нормальном функционировании (с заданной точностью измерения).

Порог чувствительности - минимальное (пороговое) значение измеряемой величины, различаемое прибором.

Чувствительность - связывает значение измеряемого параметра и соответствующее ему изменение показаний прибора.

Точность - способность прибора указывать истинное значение измеряемого показателя.

Стабильность - способность прибора поддерживать заданную точность измерений в течение определенного времени после калибровки.