Виды шкал и их особенности. Измерительные шкалы Какие бывают шкалы


В основе любого наблюдения и анализа лежат измерения.
Измерение — это алгоритмическая операция, которая данному наблюдаемому состоянию объекта ставит в соответствие определенное обозначение: число, помер или символ. Обозначим через х i . i=1,…, m наблюдаемое состояние (свойство) объекта, а через у i , i = 1,..,m — обозначение для этого свойства. Чем теснее соответствие между состояниями и их обозначениями, тем больше информации можно извлечь в результате обработки данных. Менее очевидно, что степень этого соответствия зависит не только от организации измерений (т. е. от экспериментатора), но и от природы исследуемого явления, и что сама степень соответствия в свою очередь определяет допустимые (и недопустимые) способы обработки данных!
Множество обозначений, используемых для регистрации состояний наблюдаемого объекта, называется измерительное шкалой.
Измерительные шкалы в зависимости от допустимых на них операций различаются по их силе. Самые слабые — номинальные шкалы, а самые сильные — абсолютные.
Выделяют три основных атрибута измерительных шкал, наличие или отсутствие которых определяет принадлежность шкалы к той или иной категории:
1. упорядоченность данных означает, что один пункт шкалы, соответствующий измеряемому свойству, больше, меньше или равен другому пункту;
2. интервальность пунктов шкалы означает, что интервал между любой парой чисел, соответствующих измеряемым свойствам, больше, меньше или равен интервалу между другой парой чисел;
3. нулевая точка (или точка отсчета) означает, что набор чисел, соответствующих измеряемым свойствам, имеет точку отсчета, обозначаемую за ноль, что соответствует полному отсутствию измеряемого свойства.
Кроме того, выделяют следующие группы:
o неметрические или качественные шкалы, в которых отсутствуют единицы измерений (номинальная и порядковая шкалы);
o количественные или метрические (шкала интервалов, шкала отношений и абсолютная шкала).

1. Шкала наименований
Шкала наименований (номинальная или классификационная) представляет собой конечный набор обозначений для никак не связанных между собой состояний (свойств) объекта (рис. 1).
Здесь отсутствуют все главные атрибуты измерительных шкал, а именно упорядоченность, интервальность, нулевая точка.

Рис. 1. Номинальная шкала.

Измерение будет состоять в том, чтобы, проведя эксперимент над объектом, определить принадлежность результата к тому или иному состоянию и записать это с помощью символа (набора символов), обозначающего данное состояние. Это самая простая шкала из тех, что могут рассматриваться как измерительные, хотя фактически эта шкала не ассоциируется с измере-нием и не связана с понятием «величина». Она используется только с целью отличить один объект от другого.
Если классифицируются дискретные по своей природе объекты и явления, то естественнее всего использовать шкалу наименований.
Примеры:
Для обозначения в номинальной шкале могут быть использованы:
o слова естественного языка (например, географические названия, собственные имена людей и т. д.);
o произвольные символы (гербы и флаги государств, эмблемы родов войск, всевозможные значки и т. д.);
o номера (регистрационные номера автомобилей, официальных документов, номера на майках спортсменов);
o их различные комбинации (например, почтовые адреса, экслибрисы личных библиотек, печати и пр.).
Однако необходимость классификации возникает и в тех случаях, когда классифицируемые состояния образуют непрерывное множество (или континуум). Задача сводится к предыдущей, если все множество разбить на конечное число подмножеств, искусственно образуя тем самым классы эквивалентности; тогда принадлежность состояния к какому-либо классу снова можно регистрировать в шкале наименований. Однако условность введенных классов (не их шкальных обозначений, а самих классов) рано или поздно проявится на практике.
Примеры:
1. Например, возникают трудности точного перевода с одного языка на другой при описании цветовых оттенков: в английском языке голубой, лазоревый и синий цвета не различаются.
2. Названия болезней также образуют шкалу наименований. Психиатр, ставя больному диагноз «шизофрения», «паранойя», «маниакальная депрессия» или «психоневроз», ис-пользует номинальную шкалу; и все же иногда врачи не зря вспоминают, что «нужно лечить больного, а не болезнь»: название болезни лишь обозначает класс, внутри которого на самом деле имеются различия, так как эквивалентность внутри класса носит условный характер.
Необходимо понимать, что обозначения классов - это только символы, даже если для этого использованы номера. С этими номерами нельзя обращаться как с числами - это только цифры.
Пример. Если у одного спортсмена на спине номер 1, а другого - 2, то никаких других выводов, кроме того, что это разные участники соревнований, делать нельзя: например, нельзя сказать, что «второй в два раза лучше».
При обработке экспериментальных данных, зафиксированных в номинальной шкале, непосредственно с самими данными можно выполнять только операцию проверки их совпадения или несовпадения.

2. Порядковые шкалы
Следующей по силе за номинальной шкалой идет порядковая, шкала (ординальная, ранговая). Она применяется в тех случаях, когда наблюдаемый (измеряемый) признак состояния имеет природу, не только позволяющую отождествить состояния с одним из классов эквивалентности, но и дающую возможность в каком-то отношении сравнивать разные классы.
Порядковая шкала не имеет определенной количественной меры. При этом присутствует упорядоченность, но отсутствуют атрибуты интервальности и нулевой точки.
Единственными типами отношений между неколичественными значениями шкалы могут быть:
а) равенство одинаковых значений порядковых переменных величин, соответствующих объектам одной категории,
б) неравенство разных значений переменных величин, соответствующих объектам одной категории;
в) отношения «больше» или «меньше» между разными значениями переменных величин, соответствующих объектам одной категории.
Измерение в шкале порядка может применяться, например, в следующих ситуациях:
o когда необходимо упорядочить объекты во времени или пространстве. Это ситуация, когда интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением этих объектов;
o когда нужно упорядочить объекты в соответствии с каким-либо качеством, но при этом не требуется производить его точное измерение;
o когда какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

2.1. Типовые порядковые шкалы
Обозначив такие классы символами и установив между этими символами отношения порядка, мы получим шкалу простого порядка: А → В → C → D → E → F.

Примеры:
Нумерация очередности, неимение знания, призовые места в конкурсе, социально-экономический статус («низший класс», «средний класс», «высший класс»).
Разновидностью шкалы простого порядка являются оппозиционные шкалы. Они образуются из пар антонимов (например, сильный-слабый), стоящих на разных концах шкалы, где за середину берется позиция, соответствующая среднему значению наблюдаемой сущности. Как пра-вило, остальные позиции никак не шкалируются.
Иногда оказывается, что не каждую пару классов можно упорядочить по предпочтению: неко-торые пары считаются равными - одновременно А ≥ В и В≤ А, т. е. А = В.
Шкала, соответствующая такому случаю, называется шкалой слабого порядка.
Иная ситуация возникает, когда имеются пары классов, несравнимые между собой, т. е. ни А≥ В, ни В ≤ А. В таком случае говорят о шкале частичного порядка. Шкалы частичного порядка часто возникают в социологических исследованиях субъективных предпочтений. Например, при изучении покупательского спроса субъект часто не в состоянии оценить, какой именно из двух разнородных товаров ему больше нравится (например, клетчатые носки или фруктовые консервы, велосипед или магнитофон и т. д.); затрудняется человек и упорядочить по предпочтению любимые занятия (чтение литературы, плавание, вкусная еда, слушание музыки).

Характерной особенностью порядковых шкал является то, что отношение порядка ничего не говорит о дистанции между сравниваемыми классами. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа. Например, нельзя вычислять выборочное среднее порядковых измерений.
Пример. Рассматривается испытание умственных способностей, при котором измеряется время, затрачиваемое испытуемым на решение тестовой задачи. В таких экспериментах время хотя и измеряется в числовой шкале, но как мера интеллекта принадлежит порядковой шкале.
Порядковые шкалы определяются только для заданного набора сравниваемых объектов, у этих шкал нет общепринятого, а тем более абсолютного стандарта.
Примеры:
1. При определенных условиях правомерно выражение «первый в мире, второй в Европе» — просто чемпион мира занял второе место на европейских соревнованиях.
2. Само расположение шкал является примером порядковой шкалы.

2.2. Модифицированные порядковые шкалы
Опыт работы с сильными числовыми шкалами и желание уменьшить относительность порядковых шкал, придать им хотя бы внешнюю независимость от измеряемых величин побуждают исследователей к различным модификациям, придающим порядковым шкалам некоторое (чаще всего кажущееся) усиление. Кроме того, многие величины, измеряемые в порядковых (принципиально дискретных) шкалах, имеют действительный или мыслимый непрерывный характер, что порождает попытки модификации (усиления) таких шкал. При этом иногда с полученными данными начинают обращаться как с числами, что приводит к ошибкам, неправильным выводам и решениям.
Примеры:
1. В 1811 г. немецкий минералог Ф. Моос предложил установить стандартную шкалу твердости, постулируя только десять ее градаций. 3а эталоны приняты следующие минералы с возрастающей твердостью: 1 - тальк; 2 - гипс; 3 - кальций, 4 - флюорит, 5 - апа-тит, б - ортоклаз, 7 - кварц, 8 - топаз, 9 - корунд, 10 - алмаз. Из двух минералов тверже тот, который оставляет на другом царапины или вмятины при достаточно силь-ном соприкосновении. Однако номера градаций алмаза и апатита не дают основания утверждать, что алмаз в два раза тверже апатита.
2. В 1806 г. английский гидрограф и картограф адмирал Ф. Бофорт предложил балльную шкалу силы ветра, определяя ее по характеру волнения моря: 0 - штиль (безветрие), 4 - умеренный ветер, 6 - сильный ветер, 10 шторм (буря), 12 - ураган.
3. В 1935 г. американский сейсмолог Ч. Рихтер предложил 12-балльную шкалу для оценки энергии сейсмических волн в зависимости от последствий прохождения их по данной территории. Затем он развил метод оценки силы землетрясения в эпицентре по его магнитуде (условная величина, характеризующая общую энергию упругих колебаний, вызванных землетрясением или взрывами) на поверхности земли и глубине очага.

3. Шкалы интервалов
Следующая по силе шкала — шкала интервалов (интервальная шкала), которая в отличие от предыдущих, качественных, шкал уже является количественной шкалой. Эта шкала применяется, когда упорядочивание значений измерений можно выполнить настолько точно, что известны интервалы между любыми двумя из них (рис. 2).

Рис. 2. Шкалы интервалов.

В шкале интервалов присутствуют упорядоченность и интервальность, но нет нулевой точки. Шкалы могут иметь произвольные начала отсчета, а связь между показаниями в таких шкалах является линейной:
у = ах + b,
где а > 0; — ∞ Для этой шкалы справедливо следующее свойство:

Примеры:
1. Температура, время, высота местности - величины, которые по физической природе либо не имеют абсолютного нуля, либо допускают свободу выбора в установлении начала отсчета.
2. Часто можно услышать фразу: «Высота … над уровнем моря». Какого моря? Ведь уровень морей и океанов разный, да и меняется со временем. В России высоты точек земной поверхности отсчитывают от среднемноголетнего Уровня Балтийского моря в районе Кронштадта.
В этой шкале только интервалы имеют смысл настоящих чисел и только над интервалами следует выполнять арифметические операции. Если произвести арифметические операции над самими отсчетами по шкале, забыв об их относительности, то имеется риск получить бессмыс-ленные результаты.
Пример. Нельзя сказать, что температура воды увеличилась в два раза при ее нагреве от 9 до 18° по шкале Цельсия, поскольку для того, кто привык пользоваться шкалой Фаренгейта, это будет звучать весьма странно, так как в этой шкале температура воды в том же опыте изменится от 37 до 42°.

4. Шкалы разностей
Частным случаем интервальных шкал являются шкалы разностей: циклические (периодические) шкалы, шкалы, инвариантные к сдвигу. В такой шкале значение не изменяется при любом числе сдвигов.
у = х + nb,
n = 0, 1, 2,…
Постоянная b называется периодом шкалы.
Примеры. В таких шкалах измеряется направление из одной точки (шкала компаса, роза ветров и т. д.), время суток (циферблат часов), фаза колебания (в градусах или радианах).
Однако соглашение о хотя и произвольном, но едином для нас начале отсчета шкалы позволяет использовать показания в этой шкале как числа, применять к нему арифметические действия (до тех пор пока кто-нибудь не забудет об условности нуля, например при переходе на летнее время или обратно).

5. Шкалы отношений
Следующей по силе шкалой является шкала отношений (подобий). Измерения в такой шкале являются «полноправными» числами, с ними можно выполнять любые арифметические действия, здесь присутствуют все атрибуты измерительных шкал: упорядоченность, интервальность, нулевая точка. Величины, измеряемые в шкале отношений, имеют естественный, абсолютный нуль, хотя остается свобода в выборе единиц (рис. 3):
у = ах,
где а ≠ 0

Рис. 3. Шкалы отношений

Примеры: Вес, длина, электрическое сопротивление, деньги - величина, природа которых соответствует шкале отношений. Из значений шкалы отношений видно, во сколько раз свойство одного объекта превосходит такое же свойство другого объекта.

6. Абсолютная шкала
Абсолютная (метрическая) шкала имеет и абсолютный нуль (b = 0), и абсолютную единицу (а = 1). В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и действительные числа, если кроме целых единиц присутствуют и части объектов.
Именно такими качествами обладает числовая ось, которую естественно называть абсолютной шкалой.
Важной особенностью абсолютной шкалы по сравнению со всеми остальными является отвлеченность (безразмерность) и абсолютность ее единицы. Указанная особенность позволяет производить над показаниями абсолютной шкалы такие операции, которые недопустимы для показаний других шкал, - употреблять эти показания в качестве показателя степени и аргумента логарифма.
Примеры:
1. Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т. п.
2. Примером абсолютной шкалы также является шкала температур по Кельвину.
Числовая ось используется как измерительная шкала в явной форме при счете предметов, а как вспомогательное средство присутствует во всех остальных шкалах.

7. Шкалирование
Шкалирование представляет собой отображение какого-либо свойства объекта или явления в числовом множестве.
Можно сказать, что чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Поэтому так естественно стремление каждого исследователя провести измерения в возможно более сильной шкале. Однако важно иметь в виду, что выбор шкалы измерения должен ориентироваться на объективные отношения, которым подчинена наблюдаемая величина, и лучше всего производить измерения в той шкале, которая максимально согласована с этими отношениями. Можно измерять и в шкале более слабой, чем согласованная (это приведет к потере части полезной информации), но применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка.
Иногда же исследователи усиливают шкалы; типичный случай - «оцифровка» качественных шкал: классам в номинальной или порядковой шкале присваиваются номера, с которыми дальше «работают» как с числами. Если в этой обработке не выходят за пределы допустимых преобразований, то «оцифровка» - это просто перекодировка в более удобную (например, для ЭВМ) форму. Однако применение других операций сопряжено с заблуждениями, ошибками, так как свойства, навязываемые подобным образом, на самом деле не имеют ме-ста.
По мере развития соответствующей области знания тип шкалы может меняться.
Пример. Температура сначала измерялась по порядковой шкале (холоднее - теплее), затем — по интервальным шкалам (Цельсия, Фаренгейта, Реомюра), а после открытия абсолютного нуля температур — по абсолютной шкале (Кельвина).

Резюме
1. В основе любого наблюдения и анализа лежат измерения, которые представляют собой алгоритмические операции: данному наблюдаемому состоянию объекта ставится в соответствие определенное обозначение: число, номер или символ. Множество таких обозначений, используемых для регистрации состояний наблюдаемого объекта, называется измерительной шкалой.
2. В зависимости от допустимых операций на измерительных шкалах их различают по их силе.
3. Самой слабой шкалой является номинальная шкала, представляющая собой конечный набор обозначений для никак не связанных между собой состояний (свойств) объекта.
4. Следующей по силе считается порядковая шкала, дающая возможность в каком-то отноше-нии сравнивать разные классы наблюдаемых состояний объекта, выстраивая их в определенном порядке. Различают шкалы простого, слабого и частичного порядка. Численные значения порядковых шкал не должны вводить в заблуждение относительно допустимости математических операций над ними.
5. Еще более сильная шкала - шкала интервалов, в которой кроме упорядочивания обозначений, можно оценить интервал между ними и выполнять математические действия над этими интервалами. Разновидностью шкалы интервалов является шкала разностей или циклическая.
6. Следующей по силе идет шкала отношений. Измерения в такой шкале являются «полноправными» числами, с ними можно выполнять любые арифметические действия (правда, при условии однотипности единиц измерения).
7. И, наконец, самая сильная шкала - абсолютная, с которой можно выполнять любые математические действия без каких-либо ограничений.
8. Отображение какого-либо свойства объекта или явления в числовом множестве называется шкалированием. Чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Однако применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка. Лучше всего производить измерения в той шкале, которая максимально согласована с объективными отношениями, которым подчинена наблюдаемая величина. Можно измерять и в шкале, более слабой, чем согласованная, но это приведет к потере части полезной информации.

В системном анализе выделяют раздел «теория эффективности», связанный с определением качества систем и процессов, их реализующих. Теория эффективности - научное направление, предметом изучения которого являются вопросы количественной оценки качества характеристик и эффективности функционирования сложных систем.

Оценка сложных систем может проводиться для разных целей:

4) для оптимизации - выбора наилучшего алгоритма из нескольких, реализующих один закон функционирования системы;

5) для идентификации - определения системы, качество которой наиболее соответствует реальному объекту в заданных условиях;

6) для принятия решений по управлению системой.

Общим во всех подобных задачах является подход, основанный на том, что понятия «оценка» и «оценивание» рассматриваются раздельно и оценивание проводится в несколько этапов. Под оценкой понимают результат, получаемый в ходе процесса, который определен как оценивание . Т.е. с термином «оценка» сопоставляется понятие «истинность», а с термином «оценивание» - «правильность». Истинная оценка может быть получена только при правильном процессе оценивания. Это положение определяет место теории эффективности в задачах системного анализа.

Выделяют четыре этапа оценивания сложных систем.

Этап 1. Определение цели оценивания. Выделяют два типа целей: качественные и количественные, достижение которых выражаются в соответствующих шкалах. Определение цели должно осуществляться относительно системы, в которой рассматриваемая система является элементом (подсистемой).

Этап 2. Измерение свойств систем, признанных существенными для целей оценивания. Для этого выбираются соответствующие шкалы измерений свойств и всем исследуемым свойствам систем присваивается определенное значение на этих шкалах.

Этап 3. Обоснование предпочтений критериев качества и критериев эффективности функционирования систем на основе измеренных на выбранных шкалах свойств.

Этап 4. Собственно оценивание. Все исследуемые системы, рассматриваемые как альтернативы, сравниваются по сформулированным критериям и в зависимости от целей оценивания ранжируются, выбираются, оптимизируются и т.д.

2.1.1. Понятие шкалы

В основе оценки лежит процесс сопоставления значений качественных или количественных характеристик исследуемой системы значениям соответствующих шкал. Исследование характеристик привело к выводу о том, что все возможные шкалы принадлежат к одному из нескольких типов, определяемых перечнем допустимых операций на этих шкалах.

Формально шкалой называется кортеж из трех элементов , j , Y>, где Х - реальный объект, Y - шкала, j - гомоморфное отображение X на Y .

В современной теории измерений определено:

X= {x 1 , х 2 ,…x i ,…, х п , R x } - эмпирическая система с отношением, включающая множество свойств x i , на которых в соответствии с целями измерения задано некоторое отношение R x . В процессе измерения необходимо каждому свойству х i ÎX поставить в соответствие признак или число, его характеризующее. Если, например, целью измерения является выбор, то элементы х i рассматриваются как альтернативы, а отношение R x позволяет сравнивать эти альтернативы; Y ={j (x 1),…, j(х п), R y } знаковая система с отношением, являющаяся отображением эмпирической системы в виде некоторой образной или числовой системы, соответствующей измеряемой эмпирической системе; j Î Ф - гомоморфное отображение X на Y , устанавливающее соответствие между X и Y так, что {j (x 1),…, j(х п), R y R y только тогда, когда (х 1 ,..., х п, ) Î R x .

Тип шкалы определяется по множеству допустимых преобразований Ф.

В соответствии с приведенными определениями, охватывающими как количественные, так и качественные шкалы, измерение эмпирической системы X с отношением R x состоит в определении знаковой системы Y с отношением R , соответствующей измеряемой системе. Предпочтения R x на множестве Х ´Х в результате измерения переводятся в знаковые (в том числе и количественные) соотношения R y на множестве Y ´Y.

2.1.2. Шкалы номинального типа

Самой слабой качественной шкалой является номинальная (шкала наименований , классификационная шкала ), по которой объектам или их неразличимым группам дается некоторый признак. Название «номинальный» объясняется тем, что такой признак дает лишь ничем не связанные имена объектам. Шкалы номинального типа задаются множеством взаимно однозначных допустимых преобразований шкальных значений. Эти значения для разных объектов либо совпадают, либо различаются; никакие более тонкие соотношения между значениями не зафиксированы. Основным свойством этих шкал является сохранение неизменными отношений равенства между элементами эмпирической системы в эквивалентных шкалах.

Примерами измерений в номинальном типе шкал могут служить номера автомашин, телефонов, коды городов, лиц, объектов и т. п. Единственная цель таких измерений выявление различий между объектами разных классов. Если каждый класс состоит из одного объекта, шкала наименований используется для различения объектов.

На рис.2.1 изображено измерение в номинальной шкале объектов, представляющих три множества элементов А, В, С. Здесь эмпирическую систему представляют четыре элемента: а ÎA, b ÎВ, {с, d} ÎС. Знаковая система представлена цифровой шкалой наименований, включающей элементы 1, 2,..., n и сохраняющей отношение равенства. Гомоморфное отображение φ ставит в соответствие каждому элементу из эмпирической системы определенный элемент знаковой системы. Номинальные шкалы имеют две особенности:

Всякая обработка результатов измерения в номинальной шкале должна учитывать данные особенности. В противном случае могут быть сделаны ошибочные выводы по оценке систем, не соответствующие действительности.

2.1.3. Шкалы порядка

Шкала называется ранговой (шкалой порядка ), если множество Ф состоит из всех монотонно возрастающих допустимых преобразований шкальных значений.

Монотонно возрастающим называется такое преобразование φ (х ), которое удовлетворяет условию: если х 1 > х 2 , то и φ (х 1) > φ (х 2) для любых шкальных значений из области определения. Порядковый тип шкал допускает не только различие объектов, как номинальный тип, но и используется для упорядочения объектов по измеряемым свойствам.

Ситуации для применения ранговой шкалы:

Необходимо упорядочить объекты во времени или пространстве. При этом интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением объектов;

Нужно упорядочить объекты в соответствии с каким-либо качеством, но при этом не требуется производить его точное измерение;

Какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

Примеры шкал порядка: шкала твердости минералов, предложенная в 1811 г. немецким ученым Ф. Моосом и до сих пор распространенная в полевой геологической работе; шкалы силы ветра, силы землетрясения, сортности товаров в торговле, социологические шкалы и т.п.

Любая шкала, полученная из шкалы порядка S с помощью произвольного монотонно возрастающего преобразования шкальных значений, будет также точной шкалой порядка для исходной эмпирической системы с отношениями.

2.1.4. Шкалы интервалов

Одним из наиболее важных типов шкал является тип интервалов . Этот тип содержит шкалы, единственные с точностью до множества положительных линейных допустимых преобразований вида φ (х ) = ах + b, где х ÎY Y; а > 0; b - любое значение.

Основным свойством этих шкал является сохранение неизменными отношений интервалов в эквивалентных шкалах:

Примеры применения шкал интервалов:

1) Шкалы температур. Переход от одной шкалы к эквивалентной, например от шкалы Цельсия к шкале Фаренгейта, задается линейным преобразованием шкальных значений:
t °F = 1,8 t °С + 32.

2) Измерение признака «дата совершения события», поскольку для измерения времени в конкретной шкале необходимо фиксировать масштаб и начало отсчета. Григорианский и мусульманский календари - две конкретизации шкал интервалов.

При переходе к эквивалентным шкалам с помощью линейных преобразований в шкалах интервалов происходит изменение как начала отсчета (параметр b), так и масштаба измерений (параметр а).

Шкалы интервалов так же, как номинальная и порядковая, сохраняют различие и упорядочение измеряемых объектов. Однако кроме этого они сохраняют и отношение расстояний между парами объектов. Запись означает, что расстояние между х 1 и х 2 в K раз больше расстояния между х 3 и х 4 и в любой эквивалентной шкале это значение (отношение разностей численных оценок) сохранится. При этом отношения самих оценок не сохраняются.

В социологических исследованиях в шкалах интервалов обычно измеряют временные и пространственные характеристики объектов. Например, даты событий, стаж, возраст, время выполнения заданий, разницу в отметках на графической шкале и т.д. Однако прямое отождествление замеренных переменных с изучаемым свойством не столь просто.

Типичная ошибка: свойства, измеряемые в шкале интервалов, принимаются в качестве показателей для других свойств, монотонно связанных с данными.

Применяемые для измерения связанных свойств исходные шкалы интервалов становятся всего лишь шкалами порядка. Игнорирование этого факта приводит к неверным результатам.

2.1.5. Шкалы отношений

Шкалой отношений (подобия) называется шкала, если Ф состоит из преобразований подобия j(х) = ах, а >0, где х Î Y- шкальные значения из области определения Y; а - действительные числа. В шкалах отношений остаются неизменными отношения численных оценок объектов: .

Примерами измерений в шкалах отношений являются измерения массы и длины объектов. При установлении массы используется большое разнообразие численных оценок: производя измерение в килограммах, получаем одно численное значение, при измерении в фунтах - другое и т.д. Однако в какой бы системе единиц ни производилось измерение массы, отношение масс любых объектов одинаково и при переходе от одной числовой системы к другой, эквивалентной, не меняется. Этим же свойством обладает и измерение расстояний и длин предметов.

Шкалы отношений отражают отношения свойств объектов, т.е. во сколько раз свойство одного объекта превосходит это же свойство другого объекта.

Шкалы отношений образуют подмножество шкал интервалов фиксированием нулевого значения параметра b : b = 0. Это соответствует заданию нулевой точки начала отсчета шкальных значений для всех шкал отношений. Переход от одной шкалы отношений к другой, эквивалентной ей шкале осуществляется с помощью преобразований подобия (растяжения), т.е. изменением масштаба измерений. Шкалы отношений, являясь частным случаем шкал интервалов, при выборе нулевой точки отсчета сохраняют не только отношения свойств объектов, но и отношения расстояний между парами объектов.

2.1.6. Шкалы разностей

Шкалы разностей определяются как шкалы, единственные с точностью до преобразований сдвига φ (х ) = х + b, где х ÎY шкальные значения из области определения Y; b - вещественные числа. Т.е. при переходе от одной числовой системы к другой меняется лишь начало отсчета. Шкалы разностей применяются в тех случаях, когда необходимо измерить, насколько один объект превосходит по определенному свойству другой объект. В шкалах разностей неизменными остаются разности численных оценок свойств: φ (х 1) - φ (х 2) = х 1 - х 2 .

Примеры измерений в шкалах разностей:

3) Измерение прироста продукции предприятий (в абсолютных единицах) в текущем году по сравнению с прошлым;

4) Увеличение численности учреждений, количество приобретенной техники за год и т. д.

5) Летоисчисление (в годах). Переход от одного летоисчисления к другому осуществляется изменением начала отсчета.

Шкалы разностей являются частным случаем шкал интервалов, получаемых фиксированием параметра а : (а = 1), т.е. выбором единицы масштаба измерений. Точка отсчета в шкалах разностей может быть произвольной. Шкалы разностей сохраняют отношения интервалов между оценками пар объектов, но, в отличие от шкалы отношений, не сохраняют отношения оценок свойств объектов.

2.1.7. Абсолютные шкалы

Абсолютными называют шкалы, в которых единственными допустимыми преобразованиями Ф являются тождественные преобразования: φ (х ) = {е }, где е(х) = х.

Это означает, что существует только одно отображение эмпирических объектов в числовую систему. Единственность измерения понимается в буквальном абсолютном смысле.

Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т.п. В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и вещественные числа, если кроме целых единиц присутствуют и части объектов.

Абсолютные шкалы являются частным случаем всех ранее рассмотренных типов шкал, поэтому сохраняют любые соотношения между числами оценками измеряемых свойств объектов: различие, порядок, отношение интервалов, отношение и разность значений и т.д.

Кроме указанных существуют промежуточные типы шкал, например, степенная шкала φ(х) = ах b ; а >0, b >0, а ¹1, b ¹1, и ее разновидность логарифмическая шкала φ(х) = х b ; b >0, b ¹1.



Изобразим для наглядности соотношения между основными типами шкал в виде иерархической структуры основных шкал (рис.2.2). Стрелки указывают включение совокупностей допустимых преобразований более «сильных» в менее «сильные» типы шкал. При этом шкала тем «сильнее», чем меньше свободы в выборе φ(х) . Некоторые шкалы являются изоморфными, т.е. равносильными. Например, равносильны шкала интервалов и степенная шкала. Логарифмическая шкала равносильна шкале разностей и шкале отношений.

В практической деятельности возникает необходимость измерять различные величины, характеризующие свойства тел, веществ, явлений, процессов и систем. Однако, некоторые свойства проявляются только качественно, другие – качественно и количественно. Разнообразные проявления какого-либо свойства образуют множества, отображение элементов которых на упорядоченное множество чисел или, в более общем случае, условных знаков, образуют шкалы измерения этих свойств. Шкала измерений величины – это упорядоченная последовательность значений этой величины, принятая по соглашению на основании результатов точных измерений. Термины и определения теории шкал измерений изложены в «РМГ 83-2007 Рекомендации по межгосударственной стандартизации. Государственная система обеспечения единства измерений. Шкалы измерений. Термины и определения».

В соответствии с логической структурой проявления свойств различают пять основных типов шкал измерений: наименований, порядка, разностей (интервалов), отношений и абсолютные.

Шкала наименований или классификаций или шкала измерений качественного свойства. Такие шкалы используются для классификации объектов, свойства которых проявляются только в отношении эквивалентности или отличиями проявлений этого свойства. Это самый простой тип шкал, относящийся к качественным. В них отсутствует понятие нуля, «больше или меньше» и единицы измерения. Для шкалы наименований или классификацийнедопустимы изменения спецификаций, описывающих конкретную шкалу. Процесс измерения осуществляется с использованием органов чувств человека – глаз, носа, ушей. Здесь наиболее адекватен результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы – они должны надежно различаться наблюдателями – экспертами, оценивающими данное свойство.

По шкале наименований объектам могут быть приписаны числа, однако они могут быть использованы только для определения вероятности или частоты появления данного объекта, но никак для суммирования или других математических операций. Например, могут быть пронумерованы игроки в команде с целью изучения качественных – игровых возможностей каждого игрока.

Цвета отличаются, прежде всего, качественно. Поэтому шкалы измерений цвета (колориметрия) являются шкалами наименований, однако упорядоченными по признаку близости (сходства) цветов. Кроме того, качественно неразличимые цвета (одинаковой цветности) могут отличаться количественно по светлоте (яркости).

С библейских времен существуют шкалы цветов, основанные на обозначениях их системами названий или других символов. Чаще всего исходными для образования таких шкал наименований являются семь цветов радуги. Комбинации этих и других названий составляют сотни и даже тысячи наименований цветов. В таких шкалах цветовое пространство делится на ряд блоков, которые обозначаются в соответствии с общепринятой цветовой терминологией или комбинациями символов (кодом). Например, в системе Евроколор код цвета составляет семизначное число: первые три цифры соответствуют цветовому тону, четвертая и пятая – светлоте, шестая и седьмая – насыщенности цвета. В системе Манселла код цвета составляется из буквенных символов и цифр. Однако, общепринятой на мировом уровне системы названий и символических обозначений цветов пока нет.

Такие символические шкалы наименований цветов материализуются в виде атласов цветов, состоящих из необходимого числа стандартизованных цветных образцов. В СССР был создан «Атлас стандартных образцов цвета», содержащий 1000 цветных образцов. Он предназначен для метрологического обеспечения различных отраслей. Цвет промышленного образца визуально сравнивают с цветом эталонного образца, помещенного в атласе. Специализированный для полиграфии атлас цветов содержит 1358 материальных образцов цвета. Кроме того, существует множество специальных цветовых шкал более низкого уровня общезначимости. Например,

    ГОСТ 2667- 82 Шкала цвета светлых нефтепродуктов.

    ГОСТ 3351-74 Шкала цветности питьевой воды

    ГОСТ 12789-87 Йодная и кобальт-хромпиковая шкалы цвета пива

    ГОСТ 19266-79 Йодометрическая шкала цвета лакокрасочных материалов

Цветовые измерения широко применяются при изготовлении кинескопов цветных телевизоров, в световой и цветовой сигнализации, на транспорте, в регулировании движения, в навигации, в полиграфии, в строительной и текстильной промышленности. На соответствующие методы цветовых измерений существует значительное число национальных и международных стандартов.

В химической и пищевой промышленности колориметрия применяется для определения цвета ароматических углеводородов бензольного ряда по ГОСТ 2706.1-74, окраски серной кислоты по ГОСТ 2706.3-74, цветности растительных масел по ГОСТ 5477-93, цвета неорганических пигментов и наполнителей по ГОСТ 16873-92, цветности сахара – песка и рафинада по ГОСТ 12572-93. (Для закрепления материала рекомендуется ознакомиться с содержанием какого-либо вышеперечисленного стандарта, где описаны конкретные шкалы наименований или классификаций).

Сравнение свойств по шкале наименований под силу только опытному эксперту, который обладает не только практическим опытом, но и соответствующими зрительными или обонятельными возможностями. Для получения сопоставимых результатов оценки физических величин, относящихся к шкале наименований, в последние годы разработаны и приняты мировым сообществом международные и национальные стандарты, такие как

    ГОСТ Р 53161-2008 (ИСО 5495:2005). Национальный стандарт Российской Федерации. Органолептический анализ. Методология. Метод парного сравнения;

    ГОСТ Р ИСО 8586-1-2008. Национальный стандарт Российской Федерации. Органолептический анализ. Общее руководство по отбору, обучению и контролю испытателей. Часть 1. Отобранные испытатели;

    ГОСТ Р ИСО 8588-2008 Национальный стандарт Российской Федерации. Органолептический анализ. Методология. Испытания «А» – «не А».

Шкала порядков или рангов – это шкала измерений количественного свойства (величины), характеризующаяся соотношениями эквивалентности и порядка по возрастанию или убыванию различных проявлений свойства. Она является монотонно возрастающей или убывающей и позволяет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка ноль существует, либо не существует. Однако принципиально нельзя ввести единицу измерения и размерность. Следовательно, нельзя судить, во сколько раз больше или меньше конкретные проявления свойства. На практике используют условные шкалы порядка. В них допустимы любые монотонные преобразования, но недопустимо изменение спецификаций, описывающих конкретные шкалы. В шкалах порядков или ранговисходные значения физических величин выражены в условных единицах – ранжированы.

Определение значения величин при помощи шкал порядка часто нельзя считать измерением. Например, в педагогике, спорте и других видах деятельности применяют термин «оценивание», Знания в школе, вузе оценивается по 5-ти или 4-х бальной шкале. Аналогично оцениваются результаты конкурсов, соревнований. Органолептическими методами в соответствии с установленными правилами оценивают качество продукции.

Широкое распространение получили шкалы порядка с нанесенными на них реперными точками для физических тел и явлений. Точкам реперной шкалы могут быть поставлены в соответствие цифры, называемые баллами. К таким шкалам относятся 10-ти бальная шкала Мооса для оценивания чисел твердости минералов, шкалы Роквелла, Бринелля, Виккерса для определения твердости металлов, 12-ти бальная шкала Бофорта для оценивания силы морского ветра, 12-ти бальная шкала землетрясений Рихтера (сейсмическая международная шкала), шкала вязкости Энглера, шкала чувствительности фотопленок, шкала белизны, акустическая шкала громкости звука и другие.

Своеобразны шкалы белизны. Белизна рассеивающих поверхностей материалов характеризует сходство их по цвету с некоторым стандартным белым цветом, белизна которого принимается за 100 %. Единой для различных видов материалов шкалы белизны пока не создано, но во всех вариантах применяемых шкал белизны отклонение исследуемого цвета от стандартного белого определяется одномерными критериями, например, цветовым различием. Шкалы белизны являются одномерными шкалами порядка. Белизна бумаги, картона, целлюлозы, текстильных материалов оценивается по коэффициенту отражения в синей области спектра при длине волны, равной 457 нм.

Примеры конкретных способов определения белизны (шкалы белизны):

    ГОСТ 7690-76 Целлюлоза, бумага картон. Методы определения белизны.

    ГОСТ 26361-84 Мука. Метод определения белизны.

    ГОСТ 24024-80 Фосфор и неорганические соединения фосфора. Метод определения степени белизны.

    ГОСТ 16873-92 Пигменты и наполнители неорганические. Метод измерения цвета и белизны.*

Метрологическое обеспечение измерений белизны опирается на государственные эталоны ГЭТ 81-90 (координат цвета и координат цветности) и ГЭТ 156-91 (спектрального коэффициента отражения).

На практике по шкале порядка оценивают светочувствительность фотоматериалов, которая характеризуется числами светочувствительности. Например, в России это числа чувствительности по ГОСТ, в Германии по DIN, существует международная шкала чисел общей светочувствительности, рекомендованная ИСО.

Шкалы наименований и порядка называются условными шкалами, так как в них не определены единицы измерения. Их также называют не метрическими или концептуальными. В условных шкалах одинаковым интервалам между размерами данной величины, например, чисел твердости, не соответствуют одинаковые размеры свойств величин. Поэтому баллы нельзя складывать, вычитать, делить. Разных видов условных шкал может быть сколь угодно много, так как они появляются по мере необходимости оценивания (определения) какой либо величины, в виде приписанного числа.

Шкала интервалов или разностей . В этой шкале описывают количественные свойства величин, проявляющиеся в отношениях эквивалентности, порядка и аддитивности (суммирования интервалов различных проявлений свойства). Шкала интервалов состоит из одинаковых интервалов, масштаб которых устанавливается по согласованию, имеет единицу измерения и произвольно выбранную нулевую точку. На шкале интервалов возможны действия сложения и вычитания интервалов; можно оценить во сколько раз один интервал больше другого, применимо понятие «размерность», допустимы изменения спецификаций, описывающих конкретные шкалы. Однако для некоторых физических величин сами физические величины складывать бессмысленно, например, календарные даты.

Примеры шкал интервалов – летоисчисление по различным календарям, шкала времени, температурные шкалы Цельсия, Фаренгейта, шкала длин.

В шкале Цельсия есть две реперные точки: температуры таяния льда и кипения воды. Масштаб по шкале – 1 градус Цельсия – выбирается как одна сотая интервала между двумя реперными точками. В шкале Фаренгейта также две реперные точки: температура смеси льда, поваренной соли и нашатыря и температура человеческого тела. Масштаб по шкале – 1 градус Фаренгейта – выбирается как одна девяностошестая интервала между двумя реперными точками.

Шкала отношений. В этой шкале также описывают количественные свойства величин, проявляющиеся в отношениях эквивалентности, порядка и пропорциональности (шкалы первого рода), либо аддитивности различных проявлений свойства (шкалы второго рода). В пропорциональных шкалах отношений (1-го рода), операция суммирования не имеет смысла.

Например, шкала термодинамической температуры – это шкала первого рода, шкала массы – второго рода. Отличительные признаки шкал отношений: наличие естественного нуля и устанавливаемой по соглашению единицы измерений; применимость понятия "размерность". К значениям, полученным по этой шкале, применимы все арифметические действия, то есть, допустимы масштабные преобразования, допустимо изменение спецификаций, описывающих конкретные шкалы. С формальной точки зрения шкала отношений является шкалой интервалов с естественным началом отсчета. Шкалы отношений самые совершенные. Они описываются уравнением:

где Х – физическая величина, для которой строится шкала, q - числовое значение физической величины, – единица измерения физической величины. Например, Р = 10Н , m = 50 kg

Переход от одной шкалы отношений к другой происходит в соответствии с уравнением q 2 = q 1 /, так как размер свойства есть величина постоянная.

Абсолютная шкала – это шкала отношений (пропорциональная или аддитивная) безразмерной величины. Такие шкалы обладают всеми признаками шкал отношений, но дополнительно имеют естественное, однозначное определение единицы измерения, не зависящее от принятой системы единиц измерения. В этих шкалах допустимы только тождественные преобразования и допустимы изменения спецификаций, описывающих конкретные шкалы. Примеры шкал относительных величин: к.п.д., коэффициенты усиления или ослабления, коэффициенты амплитудной модуляции, нелинейных искажений, и т.д. Ряду абсолютных шкал присущи границы, заключенные между нулем и единицей. Результаты измерений в абсолютных шкалах могут быть выражены не только в арифметических единицах, но и в процентах, промилле, битах, байтах, децибелах (см. логарифмические шкалы). Единицы абсолютных шкал могут быть применены в сочетании с единицами размерных величин. Например: скорость передачи информации в битах в секунду. Абсолютные шкалы широко используются в радиотехнических и электротехнических измерениях. Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений (со специальным названием) в таких шкалах принимают какое-то определенное число частиц (квантов), например один моль – число частиц, равное числу Авогадро.

Шкалы интервалов и отношений называют метрическими (материальными). Абсолютные и метрические шкалы относятся к разряду линейных.

Значимость изучения характеристик различных шкал и особенностей их использования, наряду с узаконенными единицами измерений, существенно возросла за последнее время в системе обеспечения единства измерений. Этот процесс будет развиваться в направлении включения понятия «шкала измерений» в определение единства измерений. Практическая реализация шкал измерений осуществляется путем стандартизации самих шкал, единиц измерений, способов и условий их однозначного воспроизведения.

Проблема обеспечения высокого качества продукции тесным образом связана с проблемой качества измерений. Между ними явно прослеживается непосредственная связь: там, где качество измерений не соответствует требованиям технологического процесса, невозможно достичь высокого уровня качества продукции. Поэтому качество продукции в значительной степени зависит от успешного решения вопросов, связанных с точностью измерений параметров качества материалов и комплектующих изделий и поддержания заданных технологических режимов. Иными словами, технический контроль качества осуществляется путем замеров параметров технологических процессов, результаты измерений которых необходимы для регулирования процессом.

Следовательно, качество измерений представляет собой совокупность свойств состояния измерений, обеспечивающих результаты измерений с требуемыми точностными характеристиками, получаемые в необходимом виде за определенный отрезок времени.

Основные свойства состояния измерений:

Точность результатов измерений;

Воспроизводимость результатов измерений;

Сходимость результатов измерений;

Быстрота получения результатов;

Единство измерений.

При этом под воспроизводимостью результатов измерений понимается близость результатов измерений одной и той же величины, полученные в разных местах, разными методами, разными средствами, разными операторами, в разное время, однако в одних и тех же условиях измерений (температуре, давлении, влажности и т.д.).

Сходимость результатов измерений - это близость результатов измерений одной и той же величины, проведенных повторно с применением одних и тех же средств, одним и тем же методом в одинаковых условиях и с той же тщательностью.

Любое измерение или количественное оценивание чего-либо осуществляется, используя соответствующие шкалы.

Шкала - это упорядоченный ряд отметок, соответствующий соотношению последовательных значений измеряемых величин. Шкалой измерений называется принятая по соглашению последовательность значений одноименных величин различного размера.

В метрологии шкала измерений является средством адекватного сопоставления и определения численных значений отдельных свойств и качеств различных объектов. Практически используют пять видов шкал: шкалу наименований, шкалу порядка, шкалу интервалов, шкалу отношений и шкалу абсолютных значений.

Шкала наименований (номинальная шкала). Это самая простая из всех шкал. В ней числа выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов. Числа, составляющие шкалу наименований, разрешается менять местами. В этой шкале нет отношений типа «больше-меньше», поэтому некоторые полагают, что применение шкалы наименований не стоит считать измерением. При использовании шкалы наименований могут проводится только некоторые математические операции. Например, ее числа нельзя складывать и вычитать, но можно подсчитывать, сколько раз (как часто) встречается то или иное число.

Шкала порядка. Места, занимаемые величинами в шкале порядка, называются рангами, а сама шкала называется ранговой, или неметрической. В такой шкале составляющие ее числа упорядочены по рангам (т.е. занимаемым местам), но интервалы между ними точно измерить нельзя. В отличие от шкалы наименований шкала порядка позволяет не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в виде суждений: «больше-меньше», «лучше-хуже» и т.п.

С помощью шкал порядка можно измерять качественные, не имеющие строгой количественной меры, показатели. Особенно широко эти шкалы используются в гуманитарных науках: педагогике, психологии, социологии. К рангам шкалы порядка можно применять большее число математических операций, чем к числам шкалы наименований.

Шкала интервалов. Это такая шкала, в которой числа не только упорядочены по рангам, но и разделены определенными интервалами. Особенность, отличающая ее от описываемой дальше шкалы отношений, состоит в том, что нулевая точка выбирается произвольно. Примерами могут быть календарное время (начало летоисчисления в разных календарях устанавливалось по случайным причинам, температура, потенциальная энергия поднятого груза, потенциал электрического поля и др.).

Результаты измерений по шкале интервалов можно обрабатывать всеми математическими методами, кроме вычисления отношений. Данные шкалы интервалов дают ответ на вопрос «на сколько больше?», но не позволяют утверждать, что одно значение измеренной величины во столько-то раз больше или меньше другого. Например, если температура повысилась с 10 до 20°С, то нельзя сказать, что стало в два раза теплее.

Шкала отношений. Эта шкала отличается от шкалы интервалов только тем, что в ней строго определено положение нулевой точки. Благодаря этому шкала отношений не накладывает никаких ограничений на математический аппарат, используемый для обработки результатов наблюдений.

По шкале отношений измеряют и те величины, которые образуются как разности чисел, отсчитанных по шкале интервалов. Так, календарное время отсчитывается по шкале интервалов, а интервалы времени - по шкале отношений.

При использовании шкалы отношений (и только в этом случае!) измерение какой-либо величины сводится к экспериментальному определению отношения этой величины к другой подобной, принятой за единицу. Измеряя длину объекта, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в данном случае) и т.п. Если ограничиться только применением шкал отношений, то можно дать другое (более узкое, частное) определение измерения: измерить какую-либо величину - значит найти опытным путем ее отношение к соответствующей единице измерения.

Шкала абсолютных величин. Во многих случаях напрямую измеряется величина чего-либо. Например, непосредственно подсчитывается число дефектов в изделии, количество единиц произведенной продукции, сколько студентов присутствует на лекции, количество прожитых лет и т.д. и т.п. При таких измерениях на измерительной шкале отмечаются

абсолютные количественные значения измеряемого. Такая шкала абсолютных значений обладает и теми же свойствами, что и шкала отношений, с той лишь разницей, что величины, обозначенные на этой шкале, имеют абсолютные, а не относительные значения.

Результаты измерений по шкале абсолютных величин имеют наибольшую достоверность, информативность и чувствительность к неточностям измерений.

Шкалы интервалов, отношений и абсолютных величин называются метрическими, так как при их построении используются некоторые меры, т.е. размеры, принятые в качестве единиц измерений.

Типы шкал

Шкалы измерений принято классифицировать по типам измеряемых данных, которые определяют допустимые для данной шкалы математические преобразования, а также типы отношений, отображаемых соответствующей шкалой , . Современная классификация шкал была предложена в 1946 году Стэнли Смитом Стивенсом.

Шкала наименований (номинальная, классификационная) Используется для измерения значений качественных признаков. Значением такого признака является наименование класса эквивалентности, к которому принадлежит рассматриваемый объект. Примерами значений качественных признаков являются названия государств, цвета, марки автомобилей и т.п. Такие признаки удовлетворяют аксиомам тождества:

  • Либо А = В, либо А ≠ В;
  • Если А = В, то В = А;
  • Если А = В и В = С, то А = С.
При большом числе классов используют иерархические шкалы наименований. Наиболее известными примерами таких шкал являются шкалы, используемые для классификации животных и растений. С величинами, измеряемыми в шкале наименований, можно выполнять только одну операцию - проверку их совпадения или несовпадения. По результатам такой проверки можно дополнительно вычислять частоты заполнения (вероятности) для различных классов, которые могут использоваться для применения различных методов статистического анализа - критерия согласия Хи-квадрат, критерия Крамера для проверки гипотезы о связи качественных признаков и др. Порядковая шкала (или ранговая) Строится на отношении тождества и порядка. Субъекты в данной шкале ранжированы. Но не все объекты можно подчинить отношению порядка. Например, нельзя сказать, что больше круг или треугольник, но можно выделить в этих объектах общее свойство-площадь, и таким образом становится легче установить порядковые отношения. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между субъектами шкалы. Пример такой шкалы: балльные оценки успеваемости в УАБД НБУ г.Сумы (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса . Интервальная шкала (она же Шкала разностей) Здесь происходит сравнение с эталоном. Построение такой шкалы позволяет большую часть свойств существующих числовых систем приписывать числам, полученным на основе субъективных оценок. Например, построение шкалы интервалов для реакций. Для данной шкалы допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия. Начало отсчёта произвольно, единица измерения задана. Допустимые преобразования - сдвиги. Пример: измерение времени. Абсолютная шкала (она же Шкала отношений) это интервальная шкала, в которой присутствует дополнительное свойство - естественное и однозначное присутствие нулевой точки. Пример: число людей в аудитории. В шкале отношений действует отношение "во столько-то раз больше". Это единственная из четырёх шкал имеющая абсолютный ноль. Нулевая точка характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия (умножение на константу). Определение нулевой точки - сложная задача для психологических исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина, сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения - Кельвин).

Из рассмотренных шкал первые две являются неметрическими , а остальные - метрическими .

С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.

Использование в психометрии

Используя различные шкалы, можно производить различные психологические измерения. Самые первые методы психологических измерений были разработаны в психофизике . Основной задачей психофизиков являлось то, каким образом определить, как соотносятся физические параметры стимуляции и соответствующие им субъективные оценки ощущений. Зная эту связь, можно понять, какое ощущение соответствует тому или иному признаку. Психофизическая функция устанавливает связь между числовым значением шкалы физического измерения стимула и числовым значением психологической или субъективной реакцией на этот стимул.

Некоторые распространённые шкалы

  • Температурные шкалы разных стран и времён (Цельсия, Фаренгейта, Кельвина и др.)

См. также

Примечания


Wikimedia Foundation . 2010 .

Синонимы :
  • Шрёдер, Герхард
  • Ересь

Смотреть что такое "Шкала" в других словарях:

    шкала - (лат. scala лестница) инструмент для измерения непрерывных свойств объекта; представляет собой числовую систему, в которой отношения между различными свойствами объектов выражены свойствами числового ряда. В психологии и социологии различные Ш.… …

    ШКАЛА - ШКАЛА, шкалы, жен. (лат. scala лестница). 1. Линейка с делениями в различных измерительных приборах. Шкала термометра. 2. Ряд величин, цифр в восходящем или нисходящем порядке (спец.). Шкала температуры больного. Шкала заболеваний. Шкала… … Толковый словарь Ушакова

    ШКАЛА - см. СКАЛА. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907. ШКАЛА, или СКАЛА т. е. линейка с делениями на термометре, барометре и других физических приборах; употребляется и в более широком смысле для обозначения… … Словарь иностранных слов русского языка

    шкала - ы; мн. шкалы; ж. [от лат. scala лестница] 1. Отметки (чёрточки) и цифры на отсчётном устройстве измерительного прибора (служат для определения каких л. величин); линейка или циферблат с делениями в различных приборах. Ш. термометра. Ш.… … Энциклопедический словарь

    Шкала I — E - Шкала I E (от англ. internal external внутренний внешний) психодиагностический опросник, автор Дж. Роттер. Шкала для выявления локуса контроля. Первоначально содержала 29 пунктов, каждый из которых был представлен двумя противоположными… … Психологический словарь

    ШКАЛА - ШКАЛА, ы, мн. шкалы, шкал, шкалам, жен. 1. Линейка или таблица с отметками и цифрами на отсчётном устройстве измерительного прибора. Ш. приёмника. 2. Ряд величин, цифр в восходящем или нисходящем порядке (спец.). Тарифная ш. | прил. шкальный, ая … Толковый словарь Ожегова

    Шкала - набор различных ставок процентов по депозитным сертификатам. По английски: Scale См. также: Депозитные сертификаты Финансовый словарь Финам … Финансовый словарь

    шкала - масштаб; микрошкала, сетка, нониус, лимб, верньер, сенситограмма Словарь русских синонимов. шкала сущ., кол во синонимов: 9 верньер (4) … Словарь синонимов

    ШКАЛА F - англ. scale, F; нем. F Skala. ПоТ. Адорно шкала авторитарных установок, позволяющая сопоставлять авторитаризм с антисемитизмом. см. АВТОРИТАРНАЯ ЛИЧНОСТЬ. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    шкала I-E - Этимология. Происходит от англ. internal external внутренний внешний. Автор. Дж.Роттер. Категория. Психодиагностический опросник. Специфика. Шкала для выявления локуса контроля. Первоначально содержала 29 пунктов, каждый из которых был… … Большая психологическая энциклопедия